=for timestamp Fr Nov 24 13:08:14 CET 2006 =head2 115. Hausaufgabe =head3 Analysis-Buch Seite 256, Aufgabe 15h =for latex {\small M<\displaystyle\int\limits_0^{\infty} x^2 e^{-x} \,\mathrm{d}x = {}\int\limits_0^{\infty} x^2 \left(-e^{-x}\right)' \,\mathrm{d}x = {}\lim\limits_{\alpha \to \infty} \left[-x^2 e^{-x} - \int 2x \left(-e^{-x}\right) \mathrm{d}x\right]_0^{\alpha} = \\ {}\lim\limits_{\alpha \to \infty} \left[-x^2 e^{-x} + 2 \int x \left(-e^{-x}\right)' \mathrm{d}x\right]_0^{\alpha} = {}\lim\limits_{\alpha \to \infty} \left[-x^2 e^{-x} + 2 \left(-x e^{-x} - \int -e^{-x} \,\mathrm{d}x\right)\right]_0^{\alpha} = {}\lim\limits_{\alpha \to \infty} \left[e^{-x} \left(-x^2 - 2 x - 2\right)\right]_0^{\alpha} = 2;> =for latex } =head3 Analysis-Buch Seite 256, Aufgabe 16 =over =item a) Für M: M<\int\limits_1^a \frac{\ln x}{x^n} \mathrm{d}x = {}\int\limits_1^a \left(\frac{x^{1-n}}{1-n}\right)' \ln x \,\mathrm{d}x = {}\left[\frac{x^{1-n}}{1 - n} \ln x - \int \underbrace{\frac{x^{1-n}}{1 - n} \cdot \frac{1}{x}}_{\frac{x^{-n}}{1-n}} \mathrm{d}x\right]_1^a = {}\left[\frac{x^{1-n}}{1-n} \left(\ln x - \frac{1}{1-n}\right)\right]_1^a = {}\frac{a^{1-n}}{1-n} \left(\ln a - \frac{1}{1-n}\right) + \left(\frac{1}{1-n}\right)^2;> Für M: M<\int \frac{\ln x}{x} \,\mathrm{d}x = \int I(\ln x) \left(\ln x\right)' \,\mathrm{d}x = \int I(t) \,\mathrm{d}t = \frac{1}{2} \ln^2 x> mit M =item c) M<\int\limits_0^a x^n \ln x \,\mathrm{d}x = {}\left[\int \frac{\ln x}{x^{-n}} \mathrm{d}x\right]_0^a = {}\left[\frac{x^{1+n}}{1+n} \left(\ln x - \frac{1}{1+n}\right)\right]_0^a = {}\frac{a^{1+n}}{1+n} \left(\ln a - \frac{1}{1+n}\right);> Speziell für M: M<\int\limits_0^1 x^n \ln x \,\mathrm{d}x = -\left(\frac{1}{1 + n}\right)^2;> =back