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Abstract. To help put established results in constructive algebra and
constructive combinatorics into perspective, construct an origin story for
certain inductive definitions and form a unified framework for certain
techniques for extracting programs from classical proofs, we propose a
modal study of the topos-theoretic multiverse. Our proposal is inspired
by the corresponding study of the set-theoretic multiverse, but focuses
less on exploring the range of set/topos-theoretic possibility and more on
concrete applications in constructive mathematics.

Thanks to the finer distinctions constructive mathematics offers, there is a host
of principles which are available in classical mathematics but seem naive from a
constructive point of view. A non-exhaustive list is:

1*. A transitive relation is well-founded iff there is no infinite descending chain.
2*. A relation is almost-full iff every infinite sequence is good.3

3*. Krull’s lemma: A ring element is nilpotent iff every prime ideal contains it.
4*. Every ring has a maximal ideal.4

5*. Markov’s principle: If a function N → N does not not have a zero, then it
actually has a zero.

6*. Dependent choice: If every element of a set is related by some relation to
some other element, then every element can be completed to an infinite chain
of related elements.

7*. The law of excluded middle holds.

Constructive theorems always carry computational and geometric content—from
every constructive proof, a corresponding algorithm can be extracted [2], and
every constructive proof holds also for continuous families of the objects in
question [4, Section 4.3]. In contrast, the listed classical principles above have no

3 An infinite sequence is good iff some term of the sequence is related to some later
term. The notion of almost-full relations has been studied in combinatorics [17,7,12]
and found applications in termination checking [3].

4 Here and in the following, by ring we mean commutative ring with unit and by
maximal ideal we mean an ideal m which is proper in the sense that 1 ∈ m ⇒ 1 = 0
and such that for every proper ideal n with m ⊆ n, m = n.
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computational witness and/or fail in continuous families, hence are not available
in constructive mathematics.

In the modal topos-theoretic multiverse, we have the following constructive
replacements to these principles.

1. A transitive relation is well-founded iff everywhere there is no infinite de-
scending chain.

2. A relation is almost-full iff every infinite sequence everywhere is good.
3. A ring element is nilpotent iff all prime ideals everywhere contain it.
4. Every ring proximally has a maximal ideal.
5. If a function N → N does everywhere not not have a zero, then it actually

has a zero.
6. If every element of a set is related by some relation to some other element,

then every element can proximally be completed to an infinite chain of related
elements.

7. Barr’s theorem, simple version: Somewhere, the law of excluded middle holds.

Briefly, a statement φ is said to hold everywhere ( φ) iff it holds in every
Grothendieck topos over the current base topos (making use of the internal
language of toposes [6,16,13]);5 A statement holds somewhere ( φ) iff it holds in
some positive Grothendieck topos over the current base; and a statement holds
proximally ( φ) iff it holds in some positive overt Grothendieck topos over the
current base. More such modalities are also useful and merit study; the precise
definitions are given in Section 1.

This modal language not only allows us to recover classical principles as above,
but also makes some powerful theorems about the topos-theoretic landscape
smoothly accessible:

8. Barr’s theorem, full version: If Zorn’s lemma holds, it is everywhere the case
that it (and even the full axiom of choice) hold somewhere.

9. If a geometric sequent ∧n
i=1ϕi ⊢

∨
j∈J ψj holds somewhere, then it holds

already here.
10. If a bounded first-order statement holds proximally, then it holds already

here.
11. For every (perhaps uncountable) inhabited set X, proximally there is a

surjection N ↠ X.

An example application of the latter two principles has recently been studied in
constructive commutative algebra [5]: For countable rings, an explicit iterative
construction of a maximal ideal is available. By Item 11, this construction can
also be carried out for arbitrary rings, though the result is not a maximal ideal in
the narrow sense; rather, the resulting maximal ideal exists proximally, in some
positive overt Grothendieck topos. However, the first-order consequences of its
existence, pertaining for instance to concrete statements about polynomials or
matrices, pass down to the base topos by Item 10. The resulting maximal ideal

5 In order to support unbounded quantification we occasionally make use of the an
extension of the usual Kripke–Joyal semantics in the form of stack semantics [15])
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can be regarded as a mathematical phantom in the sense of Gavin Wraith [18],
not existing in a narrow sense (in the base topos), but existing proximally and
hence encouraging us to broaden our notion of existence because it promises us
to work wonders.

We can also adopt the notions of switches and buttons from the modal study
of the set-theoretic multiverse [11]. Switches are statements φ such that ( φ ∧
¬φ), while buttons are statements φ such that φ; switches can be toggled

on and off like a light switch, while buttons once pressed cannot be unpressed:

11. The law of excluded middle is a switch: Everywhere it is the case that
somewhere lem holds and somewhere it does not.

12. Being countable is a button: For every set X, everywhere it is the case that
somewhere (even proximally) it is the case that everywhere X is countable.

We argue that the modal operators , , and more suggested are natu-
ral extensions and refinements of the familiar double-negation modality ¬¬ in
constructive mathematics.

Related work. The idea of a mathematical multiverse is not new, but arguably
basic to topos theory. We aim to present a more systematic study of the modal
nature of the multiverse with a focus on applications in constructive mathematics.
Specific precursors to XXX

In the airy reaches of classical set theory a related philosophy is put forward,
with a number of striking results, concentrating on exploring the range of set-
theoretic possibility [9,8,10,14,1].

This text is set in the context of constructive mathematics. Our definitions
and results can be formalized in izf or in the kind of language supported by
toposes.

Acknowledgments. We gratefully acknowledge numerous discussions and worth-
while input by Thierry Coquand, Matthias Hutzler, Ivan Di Liberti, Milly Maietti,
Iosif Petrakis, Peter Schuster, and also the organizers and participants of the
ItaCa Fest 2022 and the 2022 REDCOM workshop in Brixen, where this work
was presented. XXX

1 Modal operators

Definition 1.1. A Grothendieck topos is a category equivalent to the category
of sheaves on a small site. A Grothendieck topos over a given (Grothendieck
or elementary) topos B is “a Grothendieck topos from the point of view of B”;
using a sufficiently expressive form of the internal language of B, which allows
us to make direct sense of the notion in scare quotes, this amounts to a bounded
geometric morphism E → B, and this notion can be taken as the definition.

Henceworth, by the unqualified word “topos” we will mean “Grothendieck
topos over the current base”, and the current base topos will be denoted “Set”.
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The base topos might be the “true category of sets”, assuming that this concept
is available in one’s ontology, or also some other elementary topos such as the
free topos [?] or the effective topos [?]. The reader is reminded that the nature
of the base topos can have profound consequences for the truths of the internal
language.

The topos-theoretic multiverse of a base B is the collection of Grothendieck
toposes over B (which in set-theoretic foundations should more precisely be
formalized as the proper class of small sites in B).

Remark 1.2. Perhaps arbitrary elementary toposes over the base, corresponding
to possibly unbounded geometric morphisms E → B, or even arbitrary fibra-
tions/indexed categories over B validating an appropriate form of the axioms of
elementary toposes, should also be taken as part of the topos-theoretic multiverse.
The first foray into the modal topos-theoretic multiverse outlined in this note
sticks to Grothendieck toposes for ease of formalizability (“for every small site”
can be expressed also in the more standard flavors of the internal topos language,
while “for every elementary topos” requires more elaborate versions); because the
restricted multiverse is already sufficiently rich for the intended applications; and
because we have a generalization to the predicative setting [?] with arithmetic
universes in mind. Predicatively, not even the category of sets might be an
elementary topos, but the category of sets and categories of sheaves are still
arithmetic universes.

1.1 Positive toposes

Definition 1.3. A topos E is positive if and only if the unique geometric mor-
phism f : E → Set is surjective (that is f∗ reflects isomorphisms).

Example 1.4. The topos of sheaves over a topological space X is positive if and
only if X has a point; more generally, the topos of sheaves over a locale X is
positive if and only if every open covering of the top element of the frame of X is
inhabited. As such, positivity is a more informative version of the constructively
weaker property of being nontrivial (the property that the top open and the
bottom open do not coincide).

Example 1.5. The spectrum of a ring A, that is the classifying topos of prime
filters of A (or equivalently the topos of sheaves over the classifying locale of
prime filters of A) is positive iff 1 ̸= 0 in A.

Example 1.6. A necessary and sufficient criterion for the classifying topos of a
geometric theory T to be positive is that whenever ⊤ ⊢

∨
i∈I φi modulo T, then I

is inhabited.

1.2 Overt toposes

Definition 1.7. A topos E is overt if and only if the unique geometric mor-
phism f : E → Set is open (that is f∗ preserves the interpretation of bounded
first-order formulas).
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Example 1.8. The topos of sheaves over a topological space is always overt. More
generally, the topos of sheaves over a locale X is overt iff there exists a positivity
predicate on its frame of opens in the sense of [?]. With lem, every locale and
indeed every topos is overt [?].

Example 1.9. The spectrum of a ring A is overt iff every element of A is nilpotent
or not [?, Proposition 12.51].

Example 1.10. A sufficient criterion for the classifying topos of a geometric
theory T being overt is that the indexing sets of all disjunctions appearing on the
right hand side of turnstiles, in a normal form presentation of T, are inhabited [?,
Proposition V.3.2].

1.3 Modal operators

2 Generic models and inductive definitions

In constructive mathematics, the classical definition of well-founded relations
as those transitive relations for which there exist no infinite descending chains
is not particularly useful; while the chain condition is satisfied for the intended
examples (such as (N, <)), by its negativity the condition is too weak to facilitate
the intended proofs.

The established substitute is to declare that a transitive relation (<) on a
set X is well-founded if and only if for every subset M ⊆ X,(

∀x :X. (∀y :X. y < x⇒ y ∈M) ⇒ x ∈M
)
=⇒

(
∀x :X. x ∈M

)
. (⋆)

More economically, and preferably in predicative contexts where there is no
single set or class of “all subsets of X” but for instance a hierarchy of subsets
of increasing universe levels, a transitive relation (<) is declared well-founded if
and only if every element of X is accessible, where the accessibility predicate Acc
is inductively generated [?] by the following clause:

∀y < x. Acc(y)

Acc(x)

In impredicative settings, this inductive definition of well-foundedness coincides
with the higher-order characterization (⋆), and for the purposes of this paper we
view the inductive definition as the official one.

Similar inductive notions are used to reformulate other classical definitions in a
constructively more sensible way. For instance, the classical definition of a binary
relation R on a set X being almost-full is “every infinite sequence α : N → X
is good in the sense that there exist indices i < j such that α(i) R α(j)”. For a
constructive reformulation, we shift to finite approximations of infinite sequences
(finite lists of elements of X) and define when such an approximation is deemed
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good:6

Good(σ) :≡ (∃i < j. σ[i] R σ[j]).

We then inductively generate a relation “P |σ” for monotonous predicates P on
finite lists expressing that no matter how the given finite approximation σ evolves
over time to a better approximation, eventually P will hold, by the clauses

P (σ)

P |σ
∀x :X. P |σx

P |σ

and finally define that R is almost-full iff “Good | []”. With this inductive definition,
expected properties of the class of almost-full relations such as stability under
cartesian products (Dickman’s lemma), finite lists (Higman’s lemma) or finitely-
branching trees (Kruskal’s theorem) can all be constructively verified [?].

A similar such definition has been proposed by Thierry Coquand, Henry
Lombardi and Henrik Persson in commutative algebra for expressing that a ring
is Noetherian [?,?,?]; the classical definition “every ascending chain of ideals stabi-
lizes” and also the more meaningful and classically equivalent characterization as
“every ascending chain of finitely generated ideals stalls”7 are constructively too
weak; firstly, without the axiom of dependent choice we can often not construct
such chains [?] (but only “multi-valued chains” as in [?, Section 3.9]; but also
see [?, Section 4]), and secondly, being able to inspect suitable inductive witnesses
enables us to prove the Hilbert basis theorem [?, Corollary 16]. Coquand, Lom-
bardi and Persson hence propose to call a ring Noetherian if and only if Stalls | [ ],
where Stalls is the predicate on finite lists of finitely generated ideals expressing
xxx.

Is there a deeper explanation where these inductive definitions come from,
apart from working well and being motivated on general constructive consider-
ations? Also: Constructively the inductive definitions are much stronger than
their classical counterparts, equivalent only in presence of lem and dc. For
instance, if a relation is almost-full in the inductive sense, not only is every
infinite sequence good, but so is every infinite “multi-valued sequence”8 and
every infinite partially-defined sequence α for which for every number n ∈ N it
is not not the case that α(n) exists. Can we pinpoint how much stronger the
inductive definitions are?

Both questions have positive answers, and the modal perspective fruitfully
clarifies their connection.

Namely, the theories of an infinite sequence and of an infinite descending
chain are geometric. As such, there exist their classifying toposes, containing

6 By “σ[n]”, we mean the element at position n of the finite list σ. This notation is
only meaningful if the length of σ is at least n + 1. By “σx” we mean the enlarged
list which has x as an extra element at its tail end, and by “[ ]” we denote the empty
list. In computer science practice, it is often more efficient to prepend (“xσ”) instead
of append, but this detail shall not concern us here.

7 A chain a0 ⊆ a1 ⊆ · · · stalls iff for some index n ∈ N, an+1 = an. We are grateful to
Matthias Hutzler for proposing this terminology.

8 xxx
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the generic infinite sequence respectively the generic infinite descending chain,
and we may ask: When is this sequence good respectively when does this chain
validate ⊥?

Proposition 2.1. Let R be a relation on a set X. The generic infinite sequence
over X is good if and only if R is almost-full in the inductive sense.

Proof. The classifying topos of the theory of an infinite sequence over X can be
presented as the topos of sheaves over the site given by the partially ordered set
of finite lists of elements of X with coverage given by xxx (see Appendix xxx) [?,
Example 4.3], [?, xxx]. The Kripke–Joyal semantics states that the statement
“α0 is good”, where α0 is the generic infinite sequence, holds in the classifying
topos if and only if there is a covering U of [] such that for every open U ∈ U ,
xxx. This precisely amounts to R being almost-full in the inductive sense.

Corollary 2.2. Let R be a relation on a set X. Then R is almost-full in the
inductive sense if and only if everywhere, every infinite sequence is good.

Proof. For the “if” direction, if every infinite sequence everywhere is good, then
in particular the generic infinite sequence is. By Proposition 2.1, this statement
amounts to R being almost-full in the inductive sense.

In the converse direction, we can either argue that, since being good is
expressible as a geometric formula, if the generic infinite sequence is good then
so is every infinite sequence in every topos; or we argue, using Proposition 2.1
again, that the property of being almost-full in the inductive sense is stable under
pullback along geometric morphisms and hence passes from the base topos to
every topos. Hence (the pullback of) R is almost-full in every topos and hence
every infinite sequence in every topos is good.

Proposition 2.3. Let (<) be a transitive relation on a set X. The generic
infinite descending chain over X validates ⊥ (that is, the classifying topos of
such chains is trivial) if and only if the relation is well-founded in the inductive
sense.

Proof. Similar as the proof of Proposition 2.1. Details for the variant of “bad
sets” instead of “infinite descending chains” have been developed (xxx:language)
by Blass [?].

Corollary 2.4. A transitive relation is well-founded in the inductive sense if
and only if everywhere, it is not the case that there exists an infinite descending
chain.

Proof. Analogous to the proof of Corollary 2.2.

3 Extracting programs from multiverse proofs

Proposition 3.1. Let (≤) be a transitive almost-full relation. Then (<), where x <
y ≡ (x ≤ y ∧ ¬(y ≤ x)), is well-founded.
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Proof. Everywhere, there can be no infinite descending chain, as any such would
also be good.

Unrolling this proof gives a program of type (Good | []) →
∏

x:X Acc(x).

Remark 3.2. For the proof of Proposition 3.1, it is not relevant that pullback
along geometric morphisms typically fails to preserve the negation occuring in
the definition of (<), basically because we still have f∗(Jx > yK)∧ f∗(Jx ≤ yK) ⇒
f∗(J⊥K) = ⊥.

Theorem 3.3 (Dickson’s lemma). If X and Y are almost-full, so is X × Y .

Proof. 1. It suffices to verify that the generic infinite sequence γ = (α, β) : N →
X×Y is good. Since being good can be put as a geometric implication (in fact,
a geometric formula) and since lem holds somewhere, we may assume lem.

2. The set I := {n ∈ N | ¬∃m > n. α(n) ≤ α(m)} is not in bijection with N,
as else the I-extracted subsequence of α would be an X-sequence which
is not good. Hence, by lem, the set I is finite. Every index larger than
all the indices in I is a suitable starting point for an infinite ascending
chain α(i0) ≤ α(i1) ≤ . . ..9

3. Because Y is almost-full, the sequence β(i0), β(i1), . . . is good, that is there
exists a pair of indices n < m such that β(in) ≤ β(im). As also α(in) ≤ α(im),
the sequence γ is good.

4 Perspectives
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