POD and DEIM in field-flow fractionation

Carina Willbold Universität Augsburg

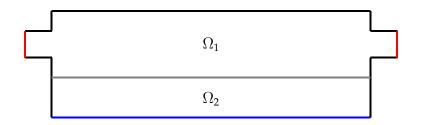
> Sion August 1, 2012

Outline

- 1 Problem formulation
 - Stokes-Brinkman
 - Advection diffusion
- 2 Proper Orthogonal Decomposition
 - Idea
 - Numerical solution
 - Model reduction by projection
- 3 Discrete Empirical Interpolation Method
 - Idea
 - Selection algorithm
 - Error estimate
- 4 DEIM in a general Hilbert space

Stokes-Brinkman equation

$$\begin{split} \rho \frac{\partial \mathbf{v}}{\partial t} - \nu \Delta \mathbf{v} + \nu \chi_{\Omega_2} K^{-1} \mathbf{v} + \nabla p &= \mathbf{0} & \text{in} \quad \Omega \times (0, T) \\ \nabla \cdot \mathbf{v} &= 0 & \text{in} \quad \Omega \times (0, T) \\ \mathbf{v} &= \mathbf{v}_{\text{in}}^{(i)} & \text{on} \quad \Gamma_{\text{in}}^{(i)} \times (\mathbf{0}, T), 1 \leq i \leq 2 \\ \mathbf{v} &= \mathbf{0} & \text{on} \quad \Gamma_{\text{lat}} \times (\mathbf{0}, T) \\ \nu \frac{\partial \mathbf{v}}{\partial \mathbf{n}_{\Gamma}} - p \mathbf{n}_{\Gamma} &= \mathbf{0} & \text{on} \quad \Gamma_{\text{out}} \times (\mathbf{0}, T) \\ \mathbf{v}(\cdot, 0) &= \mathbf{v}_0 & \text{in} \quad \Omega \end{split}$$



Stokes-Brinkman equation

weak formulation

Find
$$(\mathbf{v},p) \in W(0,T) \times Q(0,T)$$
 such that
$$\frac{\partial}{\partial t}(\mathbf{v},\mathbf{z})_{0,\Omega} + a_s(\mathbf{v},\mathbf{z}) - b_s(p,\mathbf{z}) = 0, \quad t \in (0,T]$$

$$b_s(z,\mathbf{v}) = 0, \quad t \in (0,T]$$

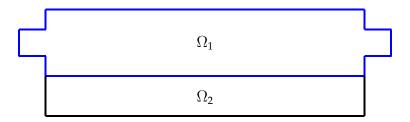
$$(\mathbf{v}(\cdot,0),\mathbf{z})_{0,\Omega} = (\mathbf{v}^0,\mathbf{z})_{0,\Omega}$$
 holds true for all $\mathbf{z} \in V_0, z \in Q(0,T)$, where
$$V := \{\mathbf{v} \in H^1(\Omega) \mid \mathbf{v}|_{\Gamma_{\mathrm{in}}^{(i)}} = \mathbf{v}_{\mathrm{in}}^{(i)}, \mathbf{v}|_{\Gamma_{\mathrm{lat}}} = \mathbf{0}\}$$

$$V_0 := \{\mathbf{v} \in H^1(\Omega) \mid \mathbf{v}|_{\Omega \setminus \Gamma_{\mathrm{out}}} = \mathbf{0}\},$$

$$W(0,T) := H^1(0,T;V^*) \cap L^2(0,T;V),$$

 $O(0,T) := L^2(0,T;L^2(\Omega)).$

$$\begin{array}{ccc} \frac{\partial c}{\partial t} - \nabla \cdot D \nabla c + \mathbf{v} \cdot \nabla c = 0 & \text{in} & \Omega_1 \times (0, T) \\ \frac{\partial c}{\partial \mathbf{n}_{\Gamma}} = 0 & \text{on} & \Gamma_1 \times (0, T) \\ c(\cdot, 0) = c_0 & \text{in} & \Omega_1 \end{array}$$



Advection diffusion equation

weak formulation

Find $c \in W(0, T)$ such that

$$\frac{\partial}{\partial t}(c,z)_{0,\Omega_1} + a_d(c,z) = 0, \quad t \in (0,T]$$
$$(c(\cdot,0),z)_{0,\Omega_1} = (c^0,z)_{0,\Omega_1}$$

holds true for all $z \in H^1(\Omega_1)$.

Advection diffusion equation

discretization in space

Consider

$$V_h := \{ v_h \in C(\Omega_1) \mid v_h|_K \in P_2(K), K \in \mathcal{T}_h(\Omega_1) \}.$$

Find then $\mathbf{c} \in C^1(0, T; V_h)$ s. t. it holds for all $\psi \in V_h$:

$$\sum_{K \in \mathcal{T}_{k}(\Omega_{1})} (rac{\mathrm{d}\mathbf{c}}{\mathrm{d}t}, \psi + au_{K} h_{K}(\mathbf{v} \cdot
abla \psi))_{0,K} + (D
abla \mathbf{c},
abla \psi)_{0,\Omega_{1}} +$$

$$(\mathbf{v} \cdot \nabla \mathbf{c}, \psi)_{0,\Omega_1} + \sum_{K \in \mathcal{T}_h(\Omega_1)} \tau_K h_K (-D\Delta \mathbf{c} + \mathbf{v} \cdot \nabla \mathbf{c}, \mathbf{v} \cdot \nabla \psi)_{0,K} = 0$$

$$(\mathbf{c}(\cdot,0),\psi)_{0,\Omega_1}=(\mathbf{c}^0,\psi)_{0,\Omega_1}.$$

min
$$J(\mathbf{u}) = \frac{1}{2} ||c(\cdot, T) - c^{\text{foc}}||_{0, \Omega_1}^2$$

$$\mathbf{w}$$

$$M_s \frac{\partial \mathbf{v}_h(t)}{\partial t} + A_s \mathbf{v}_h(t) - B_s^T p_h(t) + C_s \mathbf{u}(t) = 0, \quad t \in (0, T]$$

$$B_s \mathbf{v}_h(t) = 0, \quad t \in (0, T]$$

$$M_s \mathbf{v}_h(0) = \mathbf{v}_h^0$$

$$\mathbf{v}_h$$

$$(M_d^1+M_d^2(\mathbf{v}_h))rac{\partial c_h(t)}{\partial t}+A_d(\mathbf{v}_h)c_h(t)=0,\quad t\in(0,T]$$

$$A_d(\mathbf{v}_h)c_h(t) = 0, \quad t \in (0,T]$$

 $M_d^1c_h(0) = c_h^0$

Motivation

We want to solve

$$\mathbf{y}(t) = A\mathbf{y}(t) + F(\mathbf{y}(t))$$
$$\mathbf{y}(0) = \mathbf{y}_0$$

with varying values of parameters, where $\mathbf{y}(t) \in \mathbb{R}^n$ is unknown and $A \in \mathbb{R}^{n \times n}$, $F: \mathbb{R}^n \to \mathbb{R}^n$, $\mathbf{y}_0 \in \mathbb{R}^n$ are given.

Such problems arise in iterative algorithms for solving optimization problems with differential equations as constraints.

Motivation

We want to solve

$$\mathbf{y}(t) = A\mathbf{y}(t) + F(\mathbf{y}(t))$$
$$\mathbf{y}(0) = \mathbf{y}_0$$

with varying values of parameters, where $\mathbf{y}(t) \in \mathbb{R}^n$ is unknown and $A \in \mathbb{R}^{n \times n}$, $F: \mathbb{R}^n \to \mathbb{R}^n$, $\mathbf{y}_0 \in \mathbb{R}^n$ are given.

Empirical observation: The solution trajectories are often approximately contained in a low-dimensional subspace of \mathbb{R}^n .

Plan

Main idea: Because we do not need the full flexibility of \mathbb{R}^n , we can instead search for the solutions in a subspace having much smaller dimension $\ell \ll n$.

Snapshots

Question:

How to find the low-dimensional supspace of \mathbb{R}^n which approximately contains the trajectories?

Snapshots

Question:

How to find the low-dimensional supspace of \mathbb{R}^n which approximately contains the trajectories?

One possibility:

Record snapshots $\mathbf{y}_i := \mathbf{y}(t_i) \in \mathbb{R}^n$ of a "typical" trajectory at certain times t_1, \ldots, t_{n_s} . Then find an ℓ -dimensional subspace with smallest distance to the snapshots.

Find an ℓ -dimensional subspace, $\ell \ll n$, with the smallest distance to the snapshots:

Minimize

$$\sum_{i=1}^{n_s} \|\mathbf{y}_i - P_V(\mathbf{y}_i)\|^2$$

such that

 $V \in \text{set of all } \ell\text{-dimensional}$ subspaces of \mathbb{R}^n ,

where P_V denotes the orthogonal projection onto V.

Proper Orthogonal Decomposition

Find an ℓ -dimensional subspace, $\ell \ll n$, with the smallest distance to the snapshots:

Better formulation: Minimize

$$J(\mathbf{v}_1,\ldots,\mathbf{v}_\ell) := \sum_{i=1}^{n_s} \left\| \mathbf{y}_i - \sum_{k=1}^{\ell} \langle \mathbf{y}_i, \mathbf{v}_k \rangle \mathbf{v}_k \right\|^2$$

such that

$$\mathbf{v}_1, \dots, \mathbf{v}_{\ell} \in \mathbb{R}^n$$

 $\langle \mathbf{v}_j, \mathbf{v}_k \rangle = \delta_{jk}, \ 1 \leq j, k \leq \ell.$

Numerical solution

- **1** by using the singular value decomposition of $Y := (\mathbf{y}_1 | \cdots | \mathbf{y}_{n_s}) \in \mathbb{R}^{n \times n_s}$
- 2 by using the eigenvalue decomposition of $\mathcal{K} := ((\mathbf{y}_i, \mathbf{y}_i))_{i,i} \in \mathbb{R}^{n_s \times n_s}$

Solution by singular value decomposition

Theorem (Singular value decomposition, ca. 1873)

Let $Y \in \mathbb{R}^{n \times n_s}$. Then there exist orthogonal matrices $\widetilde{V} \in \mathbb{R}^{n \times n}$ and $W \in \mathbb{R}^{n_s \times n_s}$ with

$$Y = \widetilde{V} \Sigma W^T$$
,

where $\Sigma \in \mathbb{R}^{n \times n_s}$ is a (rectangular) diagonal matrix. The diagonal elements are called the singular values. They are nonnegative and given in descending order.

Then a solution of the optimization problem is given by the first ℓ columns of \widetilde{V} , when $Y := (\mathbf{y}_1 | \cdots | \mathbf{y}_{n_s}) \in \mathbb{R}^{n \times n_s}$ denotes the matrix of the snapshots.

Solution by eigenvalue decomposition

Consider the eigenvalue decomposition of \mathcal{K} :

$$\mathcal{K} = TDT^* \in \mathbb{R}^{n_s \times n_s}$$
.

Then the POD basis vectors are given by

$$\mathbf{u}_i := \frac{1}{\sqrt{D_{ii}}} \mathbf{Y} \, \mathbf{t}_i$$

for $1 \le i \le N$, $D_{ii} \ne 0$, with $T = (\mathbf{t}_1 | \cdots | \mathbf{t}_{n_s}) \in \mathbb{R}^{n_s \times n_s}$ and the snapshot matrix $Y := (\mathbf{y}_1 | \cdots | \mathbf{y}_{n_s})$.

Approximation error

The approximation error is given by

$$J(\mathbf{v}_1,\ldots,\mathbf{v}_k) = \sum_{i=1}^{n_s} ||\mathbf{y}_i||^2 - \sum_{k=1}^{\ell} \sigma_k^2,$$

where σ_j denotes the singular values of

$$\Upsilon = (\mathbf{y}_1 | \cdots | \mathbf{y}_{n_s}) \in \mathbb{R}^{n \times n_s}$$
.

Thus, the POD basis $\mathbf{v}_1, \dots, \mathbf{v}_k$ is ordered by importance.

Model reduction by projection

Let $\mathbf{v}_1, \dots, \mathbf{v}_\ell \in \mathbb{R}^n$ denote an orthonormal basis of a low-dimensional subspace of \mathbb{R}^n , $\ell \ll n$, and let $V_\ell := (\mathbf{v}_1| \dots | \mathbf{v}_\ell) \in \mathbb{R}^{n \times \ell}$. We make the ansatz

$$\mathbf{y}(t) := V_{\ell} \mathbf{\tilde{y}}(t),$$

with $\tilde{\mathbf{y}} \in \mathbb{R}^{\ell}$. The Galerkin projection is then given by

$$rac{\mathrm{d}}{\mathrm{d}t}\mathbf{ ilde{y}}(t) = V_{\ell}^{T}AV_{\ell}\mathbf{ ilde{y}}(t) + V_{\ell}^{T}F(V_{\ell}\mathbf{ ilde{y}}(t)), \ \mathbf{ ilde{y}}(0) = V_{\ell}^{T}\mathbf{y}_{0},$$

in which the linear part is reduced $(V_{\ell}^T A V_{\ell} \in \mathbb{R}^{\ell \times \ell})$, but the nonlinear one is not.

[Chaturantabut, Sorensen (2009)]

The partially reduced order model is given by

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{\mathbf{y}}(t) = V_{\ell}^{T}AV_{\ell}\widetilde{\mathbf{y}}(t) + V_{\ell}^{T}F(V_{\ell}\widetilde{\mathbf{y}}(t)),
\widetilde{\mathbf{y}}(0) = V_{\ell}^{T}\mathbf{y}_{0}.$$

For example let $F: \mathbb{R}^n \to \mathbb{R}^n$ have the form

$$F\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix},$$

where $f: \mathbb{R} \to \mathbb{R}$.

[Chaturantabut, Sorensen (2009)]

For example let $F: \mathbb{R}^n \to \mathbb{R}^n$ have the form

$$F\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix},$$

where $f: \mathbb{R} \to \mathbb{R}$.

To construct the reduced order model, we record snapshots $\mathbf{z}_i = F(\mathbf{y}(t_i)) \in \mathbb{R}^n$, $1 \le i \le n_s$ and determine a POD basis $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{R}^n$, $k \ll n$.

Projection of the nonlinearity

Let $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^n$, $k \ll n$ be a POD-basis and set $U_k := (\mathbf{u}_1 | \cdots | \mathbf{u}_k) \in \mathbb{R}^{n \times k}$.

Recall the partially reduced order model

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{\mathbf{y}}(t) = V_{\ell}^{T}AV_{\ell}\widetilde{\mathbf{y}}(t) + V_{\ell}^{T}F(V_{\ell}\widetilde{\mathbf{y}}(t)).$$

First idea: The equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{\mathbf{y}}(t) = V_{\ell}^{\mathrm{T}}AV_{\ell}\widetilde{\mathbf{y}}(t) + V_{\ell}^{\mathrm{T}}U_{k}U_{k}^{\mathrm{T}}F(V_{\ell}\widetilde{\mathbf{y}}(t))$$

should still be a good approximation, because $U_k U_k^T$ is the orthogonal projection onto the span of $\mathbf{u}_1, \dots, \mathbf{u}_k$.

We search for a projection matrix $Q \in \mathbb{R}^{n \times n}$ onto the span of the optimal basis $\mathbf{u}_1, \dots, \mathbf{u}_k$, such that the nonlinearity $V_{\ell}^T QF(V_{\ell}\widetilde{\mathbf{y}}(t))$ can be evaluated efficiently. To define $Q\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^n$, we make the ansatz

$$U_k \mathbf{c} \approx \mathbf{x}$$

where the coefficient vector $\mathbf{c} \in \mathbb{R}^k$ is unknwon. We can only approximately fulfill a certain choice p_1, \ldots, p_k of the equations:

$$P^T U_k \mathbf{c} \approx P^T \mathbf{x}$$

with
$$P := (\mathbf{e}_{p_1}| \cdots | \mathbf{e}_{p_k}) \in \mathbb{R}^{n \times k}$$
 and $U = (\mathbf{u}_1| \cdots | \mathbf{u}_\ell) \in \mathbb{R}^{n \times k}$.

Then we set $O\mathbf{x} := U_k \mathbf{c} = U_k (P^T U_k)^{-1} P^T \mathbf{x} \in \mathbb{R}^n$.

Reduced order model

Recall the partially reduced order model

$$rac{\mathrm{d}}{\mathrm{d}t}\widetilde{\mathbf{y}}(t) = V_{\ell}^{\mathrm{T}}AV_{\ell}\widetilde{\mathbf{y}}(t) + V_{\ell}^{\mathrm{T}}F(V_{\ell}\widetilde{\mathbf{y}}(t)),$$
 $\widetilde{\mathbf{y}}(0) = V_{\ell}^{\mathrm{T}}\mathbf{y}_{0}.$

With the projection matrix

$$Q = U_k(P^T U_k)^{-1} P^T \in \mathbb{R}^{n \times n}$$

we obtain the fully reduced order model

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{\mathbf{y}}(t) = V_{\ell}^{T}AV_{\ell}\widetilde{\mathbf{y}}(t) + V_{\ell}^{T}U_{k}(P^{T}U_{k})^{-1}P^{T}F(V_{\ell}\widetilde{\mathbf{y}}(t))$$

$$\widetilde{\mathbf{y}}(0) = V_{\ell}^{T}\mathbf{y}_{0}.$$

Selection algorithm

Input: orthonormal basis $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^n$ Output: selection matrix P such that $U_k(P^TU_k)^{-1}P^T$ is a good projection matrix

- 1 $\mathbf{r}_1 := \mathbf{u}_1$. $p_1 := \arg\min |(\mathbf{r}_1)_i|, P := (\mathbf{e}_{n_1}) \in \mathbb{R}^{n \times 1}.$ i=1....n
- 2 $\mathbf{r}_2 := \mathbf{u}_2 \widetilde{U}(P^T\widetilde{U})^{-1}P^T\mathbf{u}_2$ with $\widetilde{U} = (\mathbf{u}_1) \in \mathbb{R}^{n \times 1}$. $p_2 := \arg\min |(\mathbf{r}_2)_i|, P := (\mathbf{e}_{n_1}|\mathbf{e}_{n_2}) \in \mathbb{R}^{n \times 2}.$ i=1,...,n
- 3 $\mathbf{r}_3 := \mathbf{u}_3 \widetilde{U}(P^T\widetilde{U})^{-1}P^T\mathbf{u}_3$ with $\widetilde{U} = (\mathbf{u}_1|\mathbf{u}_2) \in \mathbb{R}^{n \times 2}$. $p_3 := \arg\min |(\mathbf{r}_3)_i|, P := (\mathbf{e}_{p_1} | \mathbf{e}_{p_2} | \mathbf{e}_{p_3}) \in \mathbb{R}^{n \times 3}.$ i=1,...,n
- and so on . . .

Error estimate

Theorem (Chaturantabut, Sorensen (2009))

For the approximation

$$\widehat{F}(\mathbf{x}) := U_k (P^T U_k)^{-1} P^T F(\mathbf{x})$$

holds the error estimate

$$||F(\mathbf{x}) - \widehat{F}(\mathbf{x})||_2 \le ||(P^T U_k)^{-1}||_2 ||(I - U_k U_k^T) \mathbf{F}(\mathbf{x})||_2.$$

Up to the constant $||(P^TU_k)^{-1}||_2$ we have just the consistency error

$$||(I - U_k U_k^T) \mathbf{F}(x)||_2 = \min_{\mathbf{v} \in \text{im } U_k} ||\mathbf{F}(x) - \mathbf{v}||_2.$$

The DEIM algorithm garanties that P^TU_k is invertible. The term $||(P^TU_k)^{-1}||_2$ can be estimated by a constant, but the bound is very conservative.

DEIM in a general Hilbert space

We want to reduce a general nonlinear function

$$F: K \longrightarrow H$$

where *K* is an arbitrary parameter space and *H* is a finite-dimensional Hilbert space.

For example, we use $H := \mathbb{R}^{n_c \times n_c}$ for reducing the advection diffusion equation.

DEIM in a general Hilbert space

- **1** Record Snapshots $z_1, \ldots, z_{n_s} \in H$.
- **2** Calculate a POD basis $u_1, \ldots, u_k \in H$ by either
 - 1 using the operator singular value decomposition of

$$\mathcal{R}: H \longrightarrow H$$

$$x \longmapsto \sum_{i=1}^{n_s} (x, z_i)_H z_i$$

2 or using the eigenvalue decomposition of the matrix

$$\mathcal{K} := ((z_i, z_j)_H)_{ij} \in \mathbb{R}^{n_s \times n_s}.$$

3 Apply the DEIM algorithm to $\mathcal{I}(u_1), \dots, \mathcal{I}(u_k)$ where $\mathcal{I}: H \to \mathbb{R}^n$ is a suitable isomorphism.

Error estimate

Then we obtain the error estimate

$$||F(\mathbf{x}) - \widehat{F}(\mathbf{x})||_H \le ||\mathcal{I}^{-1}|| ||(P^T U_k)^{-1}||_2 ||(I - U_k U_k^T) \mathcal{I}(\mathbf{F}(\mathbf{x}))||_2,$$

which depends on the isomorphism \mathcal{I} .