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Mathematical phantoms

Gavin Wraith

One of the recurring themes of mathematics,
and one that I have always found seductive,
is that of

▶ the nonexistent entity which ought to be there
but apparently is not;

▶ which nevertheless obtrudes its effects so
convincingly that one is forced to concede
a broader notion of existence.

Examples
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The generic prime filter

Let A be a commutative ring with unit. Let M be an
A-module. For any prime filter p ⊆ A, let

Mp := M[p−1] := { x
s | x ∈ M, s ∈ p}

be the stalk of M at p.

The generic prime filter is a reification of all
prime filters into a single coherent entity.
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Mp := M[p−1] := { x
s | x ∈ M, s ∈ p}

be the stalk of M at p.

The generic prime filter is a reification of all
prime filters into a single coherent entity.

Local-global principle.

M = 0 iff⋆ for all prime filters p, Mp = 0.
M → N is injective iff⋆ for all prime filters p, Mp → Np is injective.
M → N is surjective iff⋆ for all prime filters p, Mp → Np is surjective.
f is nilpotent in A iff⋆ for all prime filters p, f ̸∈ p.
??? iff⋆ for all prime filters p, Mp is fin. generated over Ap.
??? iff⋆ for all prime filters p, Mp is finite free over Ap.
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The generic prime filter

Let A be a commutative ring with unit. Let M be an
A-module. For any prime filter p ⊆ A, let

Mp := M[p−1] := { x
s | x ∈ M, s ∈ p}

be the stalk of M at p.

The generic prime filter is a reification of all
prime filters into a single coherent entity.

Local-global principle. Let p0 be the generic prime filter of A.

M = 0 iff Mp0 = 0.
M → N is injective iff Mp0 → Np0 is injective.
M → N is surjective iff Mp0 → Np0 is surjective.
f is nilpotent in A iff f ̸∈ p0.
M is fin. generated iff Mp0 is fin. generated.
M is finite locally free iff Mp0 is finite free.
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The universal localization

Let A be a ring.
The stalks Ap are local rings: If a finite sum of elements is invertible,
then so is one of the summands.
Is there a universal localization of A?

A

��

f // R
local

A′
local

loc
al

99

For a fixed local ring R, the localization A′ := Ap where p := f −1[R×]
would do the job.
Fact. A universal localization exists iff A has exactly one prime filter.
Dream. If only there was a generic prime filter p0, the universal
localization would always exist and be given by A∼ := Ap0 !
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Generic models

Theorem. There is a generic ring, a particular ring⋆ such that for
every⋆⋆ ring-theoretic statement φ, the following are equivalent:

1 φ holds for the generic ring.
2 φ holds for every ring.
3 φ is provable from the ring axioms.

Similarly for every⋆⋆⋆ other theory in place of the theory of rings:

. . . the generic group, field, vector space, . . .

. . . the generic prime ideal of a given ring A . . .

. . . the generic surjection N → X to a given set X . . .

Is 1+ 1 = 0 in the generic ring?
nonclassical truth values

The generic ring is a field.
mysterious nongeometric sequents
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Mathematical universes

1 2 3 4 5 6 7
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The usual laws
of logic hold.

Every function
is computable.

The axiom of
choice fails.

Set EffSh(X)

▶ For any topos E and any statement φ, we define the meaning of
“E |= φ” (“φ holds in the internal universe of E”) using the
Kripke–Joyal semantics.

▶ Any topos supportsmathematical reasoning:

If E |= φ and if φ entails ψ intuitionistically

no φ ∨ ¬φ, no ¬¬φ⇒ φ, no axiom of choice

, then E |= ψ.
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Exploring the effective topos

Statement in Set in Eff

1 Every natural number is prime or not prime. ✓ (trivially) ✓
2 There are infinitely many primes. ✓ ✓
3 Every map N → N is constantly zero or not. ✓ (trivially) ✗
4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓
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2 There are infinitely many primes. ✓ ✓
3 Every map N → N is constantly zero or not. ✓ (trivially) ✗
4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓

“Eff |= 1 ” means: There is a machine which determines of any given
number whether it is prime or not.
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3 Every map N → N is constantly zero or not. ✓ (trivially) ✗
4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓
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Statement in Set in Eff

1 Every natural number is prime or not prime. ✓ (trivially) ✓
2 There are infinitely many primes. ✓ ✓
3 Every map N → N is constantly zero or not. ✓ (trivially) ✗
4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓

“Eff |= 3 ” means: There is a machine which, given a machine computing a
map f : N → N, determines whether f is constantly zero or not.
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Exploring the effective topos

Statement in Set in Eff

1 Every natural number is prime or not prime. ✓ (trivially) ✓
2 There are infinitely many primes. ✓ ✓
3 Every map N → N is constantly zero or not. ✓ (trivially) ✗
4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓

“Eff |= 4 ” means: There is a machine which, given a machine computing a
map f : N → N, outputs a machine computing f .
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The classifying topos as a local lens

▶ For ring elements f ∈ A and formulas φ, we define D(f ) |= φ (“φ holds
on (and beyond) stage D(f )”) by the following clauses.

▶ A formula φ holds in the classifying topos of the theory of prime filters
of A iff D(1) |= φ.

D(f ) |= ∀x :A∼. φ(x) iff for all g ∈ A and x0 ∈ A[(fg)−1], D(fg) |= φ(x0)

D(f ) |= φ⇒ ψ iff for all g ∈ A, D(fg) |= φ implies D(fg) |= ψ

D(f ) |= φ ∨ ψ iff there is a partition f n = fg1+ · · ·+fgm s. th.
for each i, D(fgi) |= φ or D(fgi) |= ψ

D(f ) |= ⊥ iff f is nilpotent
D(f ) |= x ∈ p0 iff f ∈

√
(x)

Example.

D(1) |= ‘x is not invertible’ iff D(1) |= ‘x is invertible’ ⇒ ⊥
iff for all g ∈ A, if D(g) |= ‘x is invertible’ then D(g) |= ⊥

iff for all g ∈ A, if x is invertible in A[g−1] then g is nilpotent iff x is nilpotent.

7 / 8



The classifying topos as a local lens

▶ For ring elements f ∈ A and formulas φ, we define D(f ) |= φ (“φ holds
on (and beyond) stage D(f )”) by the following clauses.

▶ A formula φ holds in the classifying topos of the theory of prime filters
of A iff D(1) |= φ.

D(f ) |= ∀x :A∼. φ(x) iff for all g ∈ A and x0 ∈ A[(fg)−1], D(fg) |= φ(x0)

D(f ) |= φ⇒ ψ iff for all g ∈ A, D(fg) |= φ implies D(fg) |= ψ

D(f ) |= φ ∨ ψ iff there is a partition f n = fg1+ · · ·+fgm s. th.
for each i, D(fgi) |= φ or D(fgi) |= ψ

D(f ) |= ⊥ iff f is nilpotent
D(f ) |= x ∈ p0 iff f ∈

√
(x)

Example.

D(1) |= ‘x is not invertible’ iff D(1) |= ‘x is invertible’ ⇒ ⊥
iff for all g ∈ A, if D(g) |= ‘x is invertible’ then D(g) |= ⊥

iff for all g ∈ A, if x is invertible in A[g−1] then g is nilpotent iff x is nilpotent.
7 / 8



Applications of the generic prime filter

Injective matrices

Theorem. Let M be an injective matrix with more columns than rows over
a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a minimal prime ideal p ⊆ A. The matrix
is injective over the field Ap; contradiction to basic linear algebra.

Proof. ‘M is also injective as a matrix over A∼ = Ap0 . This is a contradiction
by basic intuitionistic linear algebra.’ Thus ‘⊥’. Hence 1 = 0 in A.

Grothendieck’s generic freeness

Theorem. Let M be a finitely generated A-module. If f = 0 is the only
element of A such that M[f −1] is a free A[f −1]-module, then 1 = 0 in A.

Proof. The claim amounts to ‘M∼ is not not free’. This statement follows
from basic intuitionistic linear algebra over the field A∼.
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