

Embracing the generic prime ideal: the tale of an enchanting mathematical phantom

- an invitation -

Antwerp Algebra Colloquium March 11th, 2022

Ingo Blechschmidt University of Augsburg

Mathematical phantoms

Gavin Wraith

One of the recurring themes of mathematics, and one that I have always found seductive, is that of

- the nonexistent entity which ought to be there but apparently is not;
- which nevertheless obtrudes its effects so convincingly that one is forced to concede a broader notion of existence.

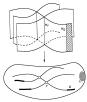
Examples

r

Let *A* be a commutative ring with unit. Let *M* be an *A*-module. For any prime filter $\mathfrak{p} \subseteq A$, let

 $M_{\mathfrak{p}} := M[\mathfrak{p}^{-1}] := \{ \frac{x}{s} \mid x \in M, s \in \mathfrak{p} \}$

be the **stalk** of M at \mathfrak{p} .



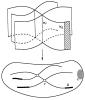
Pointiquese: let A be a ring and M on A module .

Let *A* be a commutative ring with unit. Let *M* be an *A*-module. For any prime filter $\mathfrak{p} \subseteq A$, let

 $M_{\mathfrak{p}} := M[\mathfrak{p}^{-1}] := \{ \frac{x}{s} \mid x \in M, s \in \mathfrak{p} \}$

be the **stalk** of M at \mathfrak{p} .

The generic prime filter is a **reification** of all prime filters into a single coherent entity.



Possilepisor: let A be a ring and M on A module .

Let *A* be a commutative ring with unit. Let *M* be an *A*-module. For any prime filter $\mathfrak{p} \subseteq A$, let

```
M_{\mathfrak{p}} := M[\mathfrak{p}^{-1}] := \{ \frac{x}{s} \mid x \in M, s \in \mathfrak{p} \}
```

be the **stalk** of M at \mathfrak{p} .

The generic prime filter is a **reification** of all prime filters into a single coherent entity.

Local-global principle.

- M = 0 $M \rightarrow N \text{ is injective}$ $M \rightarrow N \text{ is surjective}$ f is nilpotent in A??? ???
- iff^{*} for all prime filters \mathfrak{p} , $M_{\mathfrak{p}} = 0$. iff^{*} for all prime filters \mathfrak{p} , $M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective. iff^{*} for all prime filters \mathfrak{p} , $M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is surjective. iff^{*} for all prime filters \mathfrak{p} , $f \notin \mathfrak{p}$. iff^{*} for all prime filters \mathfrak{p} , $M_{\mathfrak{p}}$ is fin. generated over $A_{\mathfrak{p}}$.
- iff^{*} for all prime filters p, M_p is finite free over A_p .

Pointispiece: let A be a ring and M on A-module .

Let *A* be a commutative ring with unit. Let *M* be an *A*-module. For any prime filter $\mathfrak{p} \subseteq A$, let

```
M_{\mathfrak{p}} := M[\mathfrak{p}^{-1}] := \{ \frac{x}{s} \mid x \in M, s \in \mathfrak{p} \}
```

be the **stalk** of M at \mathfrak{p} .

The generic prime filter is a **reification** of all prime filters into a single coherent entity.

Local-global principle. Let \mathfrak{p}_0 be the **generic prime filter** of *A*.

M = 0 $M \to N \text{ is injective}$ $M \to N \text{ is surjective}$ f is nilpotent in A M is fin. generatedM is finite locally free $\begin{array}{ll} \mathrm{iff} & M_{\mathfrak{p}_0} = 0.\\ \mathrm{iff} & M_{\mathfrak{p}_0} \to N_{\mathfrak{p}_0} \ \mathrm{is\ injective.}\\ \mathrm{iff} & M_{\mathfrak{p}_0} \to N_{\mathfrak{p}_0} \ \mathrm{is\ surjective.}\\ \mathrm{iff} & f \not\in \mathfrak{p}_0.\\ \mathrm{iff} & M_{\mathfrak{p}_0} \ \mathrm{is\ fin.\ generated.}\\ \mathrm{iff} & M_{\mathfrak{p}_0} \ \mathrm{is\ finite\ free.} \end{array}$

Routispiece: let A be a ring and M as A-module .

Let *A* be a ring.

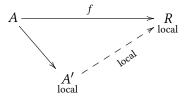
The stalks A_p are **local rings**: If a finite sum of elements is invertible, then so is one of the summands.

Is there a **universal localization** of *A*?

Let *A* be a ring.

The stalks A_p are **local rings**: If a finite sum of elements is invertible, then so is one of the summands.

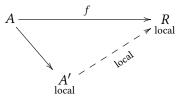
Is there a **universal localization** of *A*?



Let *A* be a ring.

The stalks A_p are **local rings**: If a finite sum of elements is invertible, then so is one of the summands.

Is there a **universal localization** of *A*?

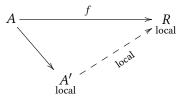


For a fixed local ring *R*, the localization $A' := A_p$ where $\mathfrak{p} := f^{-1}[R^{\times}]$ would do the job.

Let *A* be a ring.

The stalks A_p are **local rings**: If a finite sum of elements is invertible, then so is one of the summands.

Is there a **universal localization** of *A*?



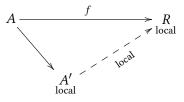
For a fixed local ring *R*, the localization $A' := A_p$ where $\mathfrak{p} := f^{-1}[R^{\times}]$ would do the job.

Fact. A universal localization exists iff A has exactly one prime filter.

Let *A* be a ring.

The stalks A_p are **local rings**: If a finite sum of elements is invertible, then so is one of the summands.

Is there a **universal localization** of *A*?



For a fixed local ring *R*, the localization $A' := A_p$ where $\mathfrak{p} := f^{-1}[R^{\times}]$ would do the job.

Fact. A universal localization exists iff A has exactly one prime filter.

Dream. If only there was a **generic prime filter** \mathfrak{p}_0 , the universal localization would always exist and be given by $A^{\sim} := A_{\mathfrak{p}_0}!$

Generic models

Theorem. There is a **generic ring**, a particular ring^{*} such that for every^{**} ring-theoretic statement φ , the following are equivalent:

1 φ holds for the generic ring.

2 φ holds for every ring.

3 φ is provable from the ring axioms.

Similarly for every^{***} other theory in place of the theory of rings:

... the generic group, field, vector space, ...

- \dots the generic prime ideal of a given ring A \dots
- ... the generic surjection $\mathbb{N} \to X$ to a given set $X \dots$

Generic models

Theorem. There is a **generic ring**, a particular ring^{*} such that for every^{**} ring-theoretic statement φ , the following are equivalent:

1 φ holds for the generic ring.

2 φ holds for every ring.

3 φ is provable from the ring axioms.

Similarly for every^{***} other theory in place of the theory of rings:

... the generic group, field, vector space, ...

- \dots the generic prime ideal of a given ring A \dots
- ... the generic surjection $\mathbb{N} \to X$ to a given set $X \dots$

Is 1 + 1 = 0 in the generic ring?

nonclassical truth values

Generic models

Theorem. There is a **generic ring**, a particular ring^{*} such that for every^{**} ring-theoretic statement φ , the following are equivalent:

1 φ holds for the generic ring.

2 φ holds for every ring.

3 φ is provable from the ring axioms.

Similarly for every^{***} other theory in place of the theory of rings:

... the generic group, field, vector space, ...

- \dots the generic prime ideal of a given ring A \dots
- ... the generic surjection $\mathbb{N} \to X$ to a given set $X \dots$

Is 1 + 1 = 0 in the generic ring?

nonclassical truth values

The generic ring is a field.

mysterious nongeometric sequents

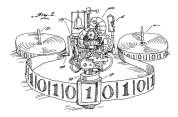
Mathematical universes

- For any topos *E* and any statement *φ*, we define the meaning of "*E* ⊨ *φ*" ("*φ* holds in the internal universe of *E*") using the Kripke–Joyal semantics.
- Any topos supports mathematical reasoning:
 If ε ⊨ φ and if φ entails ψ intuitionistically, then ε ⊨ ψ.

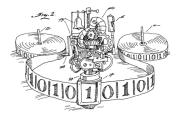
Mathematical universes

- For any topos *E* and any statement *φ*, we define the meaning of "*E* ⊨ *φ*" ("*φ* holds in the internal universe of *E*") using the Kripke–Joyal semantics.
- Any topos supports mathematical reasoning:
 If ε ⊨ φ and if φ entails ψ intuitionistically, then ε ⊨ ψ.

no $\varphi \lor \neg \varphi$, no $\neg \neg \varphi \Rightarrow \varphi$, no axiom of choice

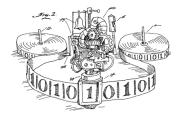


	Statement	in Set	in Eff
1	Every natural number is prime or not prime.	✓ (trivially)	✓
2	There are infinitely many primes.	1	1
3	Every map $\mathbb{N} \to \mathbb{N}$ is constantly zero or not.	✓ (trivially)	×
4	Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	✓ (trivially)
5	Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	1



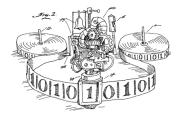
	Statement	in Set	in Eff
1	Every natural number is prime or not prime.	✓ (trivially)	✓
2	There are infinitely many primes.	1	1
3	Every map $\mathbb{N} \to \mathbb{N}$ is constantly zero or not.	✓ (trivially)	×
4	Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	✓ (trivially)
5	Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	1

"Eff \models **1**" means: There is a machine which determines of any given number whether it is prime or not.



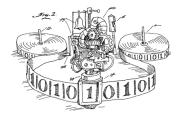
	Statement	in Set	in Eff
1	Every natural number is prime or not prime.	✓ (trivially)	✓
2	There are infinitely many primes.	1	\checkmark
3	Every map $\mathbb{N} \to \mathbb{N}$ is constantly zero or not.	✓ (trivially)	X
4	Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	✓ (trivially)
5	Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	\checkmark

"Eff \models 2" means: There is a machine producing arbitrarily many primes.



	Statement	in Set	in Eff
1	Every natural number is prime or not prime.	✓ (trivially)	1
2	There are infinitely many primes.	1	\checkmark
3	Every map $\mathbb{N} \to \mathbb{N}$ is constantly zero or not.	✓ (trivially)	X
4	Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	✓ (trivially)
5	Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	\checkmark

"Eff \models 3" means: There is a machine which, given a machine computing a map $f : \mathbb{N} \to \mathbb{N}$, determines whether f is constantly zero or not.



	Statement	in Set	in Eff
1	Every natural number is prime or not prime.	✓ (trivially)	1
2	There are infinitely many primes.	1	\checkmark
3	Every map $\mathbb{N} \to \mathbb{N}$ is constantly zero or not.	✓ (trivially)	X
4	Every map $\mathbb{N} \to \mathbb{N}$ is computable.	X	✓ (trivially)
5	Every map $\mathbb{R} \to \mathbb{R}$ is continuous.	X	\checkmark

"Eff \models **4**" means: There is a machine which, given a machine computing a map $f : \mathbb{N} \to \mathbb{N}$, outputs a machine computing f.

The classifying topos as a local lens

- For ring elements *f* ∈ *A* and formulas φ, we define *D*(*f*) ⊨ φ ("φ holds on (and beyond) stage *D*(*f*)") by the following clauses.
- A formula φ holds in the classifying topos of the theory of prime filters of *A* iff $D(1) \models \varphi$.

 $D(f) \models \forall x \colon A^{\sim}. \varphi(x)$ $D(f) \models \varphi \Rightarrow \psi$ $D(f) \models \varphi \lor \psi$

 $D(f) \models \bot$ $D(f) \models x \in \mathfrak{p}_0$

iff for all $g \in A$ and $x_0 \in A[(fg)^{-1}]$, $D(fg) \models \varphi(x_0)$ iff for all $g \in A$, $D(fg) \models \varphi$ implies $D(fg) \models \psi$ iff there is a partition $f^n = fg_1 + \cdots + fg_m$ s. th. for each i, $D(fg_i) \models \varphi$ or $D(fg_i) \models \psi$ iff f is nilpotent

 $\inf f \in \sqrt{(x)}$

The classifying topos as a local lens

- For ring elements *f* ∈ *A* and formulas φ, we define *D*(*f*) ⊨ φ ("φ holds on (and beyond) stage *D*(*f*)") by the following clauses.
- A formula φ holds in the classifying topos of the theory of prime filters of *A* iff $D(1) \models \varphi$.

 $D(f) \models \forall x : A^{\sim}. \varphi(x)$ $D(f) \models \varphi \Rightarrow \psi$ $D(f) \models \varphi \lor \psi$ $D(f) \models \bot$

 $D(f) \models x \in \mathfrak{p}_0$

iff for all $g \in A$ and $x_0 \in A[(fg)^{-1}]$, $D(fg) \models \varphi(x_0)$ iff for all $g \in A$, $D(fg) \models \varphi$ implies $D(fg) \models \psi$ iff there is a partition $f^n = fg_1 + \cdots + fg_m$ s. th. for each i, $D(fg_i) \models \varphi$ or $D(fg_i) \models \psi$ iff f is nilpotent

iff $f \in \sqrt{(x)}$

Example.

 $D(1) \models x$ is not invertible' iff $D(1) \models x$ is invertible' $\Rightarrow \bot$

- iff for all $g \in A$, if $D(g) \models x$ is invertible' then $D(g) \models \bot$
- iff for all $g \in A$, if x is invertible in $A[g^{-1}]$ then g is nilpotent iff x is nilpotent.

Injective matrices

Theorem. Let *M* be an injective matrix with more columns than rows over a ring *A*. Then 1 = 0 in *A*.

Injective matrices

Theorem. Let *M* be an injective matrix with more columns than rows over a ring *A*. Then 1 = 0 in *A*.

Proof. Assume not. Then there is a minimal prime ideal $\mathfrak{p} \subseteq A$. The matrix is injective over the field $A_{\mathfrak{p}}$; contradiction to basic linear algebra.

Injective matrices

Theorem. Let *M* be an injective matrix with more columns than rows over a ring *A*. Then 1 = 0 in *A*.

Proof. Assume not. Then there is a minimal prime ideal $\mathfrak{p} \subseteq A$. The matrix is injective over the field $A_{\mathfrak{p}}$; contradiction to basic linear algebra.

Proof. '*M* is also injective as a matrix over $A^{\sim} = A_{\mathfrak{p}_0}$. This is a contradiction by basic intuitionistic linear algebra.' Thus ' \perp '. Hence 1 = 0 in *A*.

Injective matrices

Theorem. Let *M* be an injective matrix with more columns than rows over a ring *A*. Then 1 = 0 in *A*.

Proof. Assume not. Then there is a minimal prime ideal $\mathfrak{p} \subseteq A$. The matrix is injective over the field $A_{\mathfrak{p}}$; contradiction to basic linear algebra.

Proof. '*M* is also injective as a matrix over $A^{\sim} = A_{\mathfrak{p}_0}$. This is a contradiction by basic intuitionistic linear algebra.' Thus ' \perp '. Hence 1 = 0 in *A*.

Grothendieck's generic freeness

Theorem. Let *M* be a finitely generated *A*-module. If f = 0 is the only element of *A* such that $M[f^{-1}]$ is a free $A[f^{-1}]$ -module, then 1 = 0 in *A*.

Proof. The claim amounts to M^{\sim} is **not not free**'. This statement follows from basic intuitionistic linear algebra over the field A^{\sim} .