

A general Nullstellensatz for generalised spaces

6th Workshop on Formal Topology in Birmingham April 11th, 2019

- an invitation -

Ingo Blechschmidt Università di Verona

EThe mystery of nongeometric sequents

Let \mathbb{T} be a geometric theory, for instance the theory of rings.

sorts, function symbols, relation symbols, geometric sequents as axioms

sorts: R

fun. symb.: 0, 1, −, +, ·

axioms: $(\top \vdash_{x,y:R} xy = yx), \dots$

$$\mathbb{Z}[X,Y,Z]/(X^n+Y^n-Z^n)$$

Let \mathbb{T} be a geometric theory, for instance the theory of rings.

sorts, function symbols, relation symbols, geometric sequents as axioms

sorts:
$$R$$
 fun. symb.: $0, 1, -, +, \cdot$ axioms: $(\top \vdash_{x,y;R} xy = yx), \dots$

$$\mathbb{Z}[X,Y,Z]/(X^n+Y^n-Z^n)$$

Theorem. There is a generic model $U_{\mathbb{T}}$. It is conservative in that for any geometric sequent σ the following notions coincide:

- **1** The sequent σ holds for $U_{\mathbb{T}}$.
- **2** The sequent σ holds for any \mathbb{T} -model in any topos.
- **3** The sequent σ is provable modulo \mathbb{T} .

The mystery of nongeometric sequents

Let \mathbb{T} be a geometric theory, for instance the theory of rings.

sorts, function symbols, relation symbols, geometric sequents as axioms

sorts:
$$R$$
 fun. symb.: $0, 1, -, +, \cdot$ axioms: $(\top \vdash_{x,y;R} xy = yx), \dots$

Theorem. There is a generic model $U_{\mathbb{T}}$. It is conservative in that for any geometric sequent σ the following notions coincide:

- The sequent σ holds for $U_{\mathbb{T}}$.
- The sequent σ holds for any \mathbb{T} -model in any topos.
- The sequent σ is provable modulo \mathbb{T} .

Observation (Kock). The generic local ring is a field:

$$(x = 0 \Rightarrow \bot) \vdash_{x \in R} (\exists y : R. \ xy = 1)$$

The generic model is **not** the same as ...

- the initial model (think \mathbb{Z}) or
- the free model on one generator (think $\mathbb{Z}[X]$).

Set-based models are **too inflexible**.

Definition. The syntactic site $C_{\mathbb{T}}$ has ...

- objects: $\{x_1: X_1, \ldots, x_n: X_n, \varphi\}$ (shorter: $\{\vec{x}, \varphi\}$)
- morphisms: eqv. classes of provably functional formulas
- 3 coverings: provably jointly surjective families

The topos of sheaves over $C_{\mathbb{T}}$ is the **classifying topos** Set[\mathbb{T}]. The generic model interprets a sort X by $\xi\{x: X. \top\}$.

EWorking internally to toposes

A systematic source

Let C be a site. We recursively define

$$U \models \varphi$$
 (" φ holds on U ")

for objects $U \in \mathcal{C}$ and formulas φ . Write "Sh(\mathcal{C}) $\models \varphi$ " for $1 \models \varphi$.

```
U \models \top
                         iff true
U \models \bot
                         iff false the empty family is a covering of U
U \models s = t : F iff s|_{U} = t|_{U} \in F(U)
U \models \varphi \land \psi iff U \models \varphi and U \models \psi
U \models \varphi \lor \psi iff U \models \varphi or U \models \psi there exists a covering (U_i \to U)_i
                                     such that for all i: U_i \models \varphi or U_i \models \psi
U \models \varphi \Rightarrow \psi iff for all V \rightarrow U: V \models \varphi implies V \models \psi
U \models \forall s : F. \varphi(s) iff for all V \to U and sections s_0 \in F(V): V \models \varphi(s_0)
U \models \exists s : F. \varphi(s) iff there exists s_0 \in F(U) such that U \models \varphi(s_0)
                              there exists a covering (U_i \rightarrow U)_i such that for all i:
                                      there exists s_0 \in F(U_i) such that U_i \models \varphi(s_0)
```

A topos-theoretic Nullstellensatz

EA selection of nongeometric properties

The **generic object** validates:

$$\forall x, y : U_{\mathbb{T}}. \neg \neg (x = y).$$

$$\forall x_1,\ldots,x_n:U_{\mathbb{T}}.\,\neg\forall y:U_{\mathbb{T}}.\,\bigvee_{i=1}^n y=x_i.$$

$$(U_{\mathbb{T}})^{U_{\mathbb{T}}} \cong 1 \coprod U_{\mathbb{T}}.$$

The **generic ring** validates:

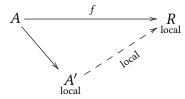
$$\forall x: U_{\mathbb{T}}. \neg \neg (x=0).$$

$$\forall x: U_{\mathbb{T}}. (x=0 \Rightarrow 1=0) \Rightarrow (\exists y: U_{\mathbb{T}}. xy=1).$$

The generic local ring validates:

- $\neg \forall x : U_{\mathbb{T}}. \neg \neg (x = 0).$
- $\forall a_0, \dots, a_{n-1} : U_{\mathbb{T}}. \neg \neg \exists x : U_{\mathbb{T}}. x^n + a_{n-1}x^{n-1} + \dots + a_0x^0 = 0.$
- Let $\Delta = \{ \varepsilon : U_{\mathbb{T}} \mid \varepsilon^2 = 0 \}$. For any map $f : \Delta \to U_{\mathbb{T}}$, there are unique elements $a, b : U_{\mathbb{T}}$ s. th. $f(\varepsilon) = a + b\varepsilon$ for all $\varepsilon : \Delta$.

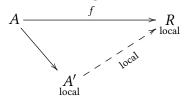
Let *A* be a ring. Is there a **free local ring** $A \rightarrow A'$ over *A*?



For a fixed ring R, the localization $A' := A[S^{-1}]$ with $S := f^{-1}[R^{\times}]$ would do the job. (S is a *filter*.)

Hence we need the **generic filter**.

Let *A* be a ring. Is there a **free local ring** $A \rightarrow A'$ over *A*?

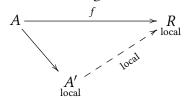


For a fixed ring R, the localization $A' := A[S^{-1}]$ with $S := f^{-1}[R^{\times}]$ would do the job. (S is a *filter*.)

Hence we need the **generic filter**.

The free local ring over A is $A^{\sim} := \underline{A}[F^{-1}]$, where F is the generic filter, living in Spec(A), the classifying topos of filters of A.

Let A be a ring. Is there a free local ring $A \to A'$ over A?



For a fixed ring *R*, the localization $A' := A[S^{-1}] \text{ with } S := f^{-1}[R^{\times}]$ would do the job. (*S* is a *filter*.)

A systematic source

Hence we need the **generic filter**.

The free local ring over *A* is $A^{\sim} := \underline{A}[F^{-1}]$, where *F* is the generic filter, living in Spec(A), the classifying topos of filters of A.

If *A* is reduced $(x^n = 0 \Rightarrow x = 0)$:

 A^{\sim} is a **field**: $\forall x : A^{\sim}$. $(\neg(\exists y : A^{\sim}. xy = 1) \Rightarrow x = 0)$. A^{\sim} has $\neg\neg$ -stable equality: $\forall x, y : A^{\sim}$. $\neg\neg(x = y) \Rightarrow x = y$. A^{\sim} is anonymously Noetherian.

A systematic source of nongeometricity?

Empirical fact. In synthetic algebraic geometry, every known property of A¹ followed from its **synthetic quasicoherence**:

For any finitely presented \mathbb{A}^1 -algebra A, the canonical map

$$A \longrightarrow (\underline{\mathbb{A}}^1)^{\operatorname{Hom}_{\underline{\mathbb{A}}^1}(A,\underline{\mathbb{A}}^1)}, \ s \longmapsto (x \mapsto x(s))$$

is an isomorphism of \mathbb{A}^1 -algebras.

- Does a general metatheorem explain this observation?
- Is there a systematic source in any classifying topos?
- Is there even an exhaustive source?

lpha holds for $U_{\mathbb{T}}$ α is \mathbb{T} -redundant \mathbb{T} proves α

A. Kock has pointed out [5 (ii)] that the generic local ring satisfies the nongeometric sentence

$$\forall x_1 \dots \forall x_n. (\neg (\land (x_i = 0)) \rightarrow \lor (\exists y. x_i y = 1))$$

which in classical logic defines a field! The problem of characterising all the nongeometric properties of a generic model appears to be difficult. If the generic model of a geometric theory T satisfies a sentence \alpha then any geometric consequence of $T+(\alpha)$ has to be a consequence of T. We might call α T-redundant. Does the generic T-model satisfy all T-redundant sentences?

> Gavin Wraith. Some recent developments in topos theory. In: Proc. of the ICM (Helsinki, 1978).

- **1** Does a general metatheorem explain this observation?
- **2** Is there a systematic source in any classifying topos?
- Is there even an exhaustive source?

lpha holds for $U_{\mathbb{T}}$ α is \mathbb{T} -redundant \mathbb{T} proves α

Theorem. Internally to $Set[\mathbb{T}]$:

For any geometric* sequent σ over the signature of $\underline{\mathbb{T}}/U_{\mathbb{T}}$, if σ holds for $U_{\mathbb{T}}$, then $\underline{\mathbb{T}}/U_{\mathbb{T}}$ proves* σ .

A topos-theoretic Nullstellensatz

Theorem. Internally to $Set[\mathbb{T}]$:

For any geometric* sequent σ over the signature of $\underline{\mathbb{T}}/U_{\mathbb{T}}$, if σ holds for $U_{\mathbb{T}}$, then $\underline{\mathbb{T}}/U_{\mathbb{T}}$ proves* σ .

The algebraic Nullstellensatz. Let *A* be a ring. Let $f, g \in A[X]$ be polynomials. Then, subject to some conditions:

$$\underbrace{\left(\forall x \in A. \left(f(x) = 0 \Rightarrow g(x) = 0\right)\right)}_{\text{algebraic truth}} \Longrightarrow \underbrace{\left(\exists h \in A[X]. \ g = hf\right)}_{\text{algebraic certificate}}$$

A topos-theoretic Nullstellensatz

Affine schemes

Theorem. Internally to Set $|\mathbb{T}|$:

For any geometric* sequent σ over the signature of $\mathbb{T}/U_{\mathbb{T}}$, if σ holds for $U_{\mathbb{T}}$, then $\mathbb{T}/U_{\mathbb{T}}$ proves* σ .

The algebraic Nullstellensatz. Let A be a ring. Let $f, g \in A[X]$ be polynomials. Then, subject to some conditions:

$$\underbrace{\left(\forall x \in A. \left(f(x) = 0 \Rightarrow g(x) = 0\right)\right)}_{\text{algebraic truth}} \Longrightarrow \underbrace{\left(\exists h \in A[X]. \ g = hf\right)}_{\text{algebraic certificate}}$$

A naive version. "Internally to Set[T], for any geometric sequent σ over the signature of $\underline{\mathbb{T}}$, if σ holds for $U_{\mathbb{T}}$, then $\underline{\mathbb{T}}$ proves σ ." False, for instance with the theory of rings we have

Set
$$[\mathbb{T}] \models \neg(\lceil \underline{\mathbb{T}} \text{ proves } (\top \vdash 1 + 1 = 0) \rceil)$$

but Set $[\mathbb{T}] \not\models \neg(1 + 1 = 0)$.

Affine schemes

Theorem. Internally to $Set[\mathbb{T}]$:

For any geometric* sequent σ over the signature of $\underline{\mathbb{T}}/U_{\mathbb{T}}$, if σ holds for $U_{\mathbb{T}}$, then $\underline{\mathbb{T}}/U_{\mathbb{T}}$ proves* σ .

Definition. The theory $\underline{\mathbb{T}}/U_{\mathbb{T}}$ is the internal geometric theory of $U_{\mathbb{T}}$ -algebras, the theory which arises from $\underline{\mathbb{T}}$ by adding:

- for each element $x: U_{\mathbb{T}}$ a constant symbol e_x ,
- 2 for each function symbol f and n-tuple $(x_1, \ldots, x_n) \in (U_{\mathbb{T}})^n$ the axiom $(\top \vdash f(e_{x_1}, \ldots, e_{x_n}) = e_{f(x_1, \ldots, x_n)})$,
- for each relation symbol R and n-tuple $(x_1, \ldots, x_n) \in (U_{\mathbb{T}})^n$ such that $R(x_1, \ldots, x_n)$ the axiom $(\top \vdash R(e_{x_1}, \ldots, e_{x_n}))$.

Remark. Externalising the internal classifying topos $\operatorname{Set}[\mathbb{T}][\underline{\mathbb{T}}/U_{\mathbb{T}}]$ yields the classifying topos of \mathbb{T} -homomorphisms.

Revisiting the test cases

A systematic source

Theorem. Internally to Set [T]:

For any geometric* sequent σ over the signature of $\mathbb{T}/U_{\mathbb{T}}$, if σ holds for $U_{\mathbb{T}}$, then $\mathbb{T}/U_{\mathbb{T}}$ proves* σ .

In the object classifier. Let $x, y: U_{\mathbb{T}}$. Assume that $\neg(x = y)$. By the Nullstellensatz $\underline{\mathbb{T}}/U_{\mathbb{T}}$ proves $(e_x = e_y \vdash \bot)$. But this is false in the $\mathbb{T}/U_{\mathbb{T}}$ -model $U_{\mathbb{T}}/(x \sim y)$.

In the ring classifier. Let $f, g: U_{\mathbb{T}}[X]$ such that any zero of f is a zero of g. By the Nullstellensatz $\underline{\mathbb{T}}/U_{\mathbb{T}}$ proves this fact. Hence it holds in the $\mathbb{T}/U_{\mathbb{T}}$ -model $U_{\mathbb{T}}[X]/(f)$. In this model f has the zero [X]. Hence also g([X]) = 0 in $U_{\mathbb{T}}[X]/(f)$, that is g = hf for some $h: U_{\mathbb{T}}[X]$.

Exhaustion and extensions

Affine schemes

Theorem. A first-order formula holds for $U_{\mathbb{T}}$ iff it is intuitionistically provable from the axioms of \mathbb{T} and the scheme

$$\lceil \sigma \text{ holds} \rceil \implies \lceil \underline{\mathbb{T}}/U_{\mathbb{T}} \text{ proves}^{\star\star} \sigma \rceil.$$
 (Nullstellensatz)

Theorem. Let \mathbb{T}' be a quotient theory of \mathbb{T} . Assume that $U_{\mathbb{T}}$ is contained in the subtopos $Set[\mathbb{T}']$. Then internally to $Set[\mathbb{T}']$:

A geometric* sequent σ with Horn consequent holds for $U_{\mathbb{T}'}$ iff $\mathbb{T}/U_{\mathbb{T}}$ proves* σ .

Theorem. The morphism ev is an isomorphism.

$$\operatorname{ev}:\operatorname{FunctFormulas}^{\star}(\underline{\mathbb{T}}/U_{\mathbb{T}})/(\dashv \vdash) \longrightarrow P(U_{\mathbb{T}})$$

Theorem. A higher-order formula holds for $U_{\mathbb{T}}$ iff it is provable in intuitionistic higher-order logic from the axioms of \mathbb{T} and the higher-order Nullstellensatz scheme.