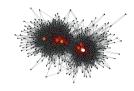


Maximal ideals in commutative algebra as convenient fictions

- an invitation -

Bonn Constructive Algebra Seminar July 22th, 2024



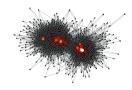
Let a continuous family of symmetric matrices be given:

$$egin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \ dots & & dots \ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix}$$

Then for every parameter value $t \in \Omega$, classically there is

- ▶ a full list of eigenvalues $\lambda_1(t), \ldots, \lambda_n(t)$ and
- ▶ an eigenvector basis $(v_1(t), \ldots, v_n(t))$.

Can locally the functions λ_i be chosen to be continuous? How about the ν_i ?



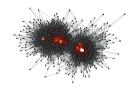
Let a continuous family of symmetric matrices be given:

$$egin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \ dots & & dots \ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix}$$

Then for every parameter value $t \in \Omega$, classically there is

- ▶ a full list of eigenvalues $\lambda_1(t), \ldots, \lambda_n(t)$ and
- ▶ an eigenvector basis $(v_1(t), \ldots, v_n(t))$.

Can locally the functions λ_i be chosen to be continuous? **Yes.** How about the v_i ? **No**



Let a continuous family of symmetric matrices be given:

$$egin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \ dots & & dots \ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix}$$

Then for every parameter value $t \in \Omega$, classically there is

- ▶ a full list of eigenvalues $\lambda_1(t), \ldots, \lambda_n(t)$ and
- ▶ an eigenvector basis $(v_1(t), \ldots, v_n(t))$.

Can locally the functions λ_i be chosen to be continuous? **Yes.** How about the v_i ? No, but **yes** on a dense open subset of Ω .

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

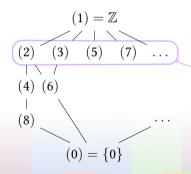
Proof. Assume not.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal m.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} .



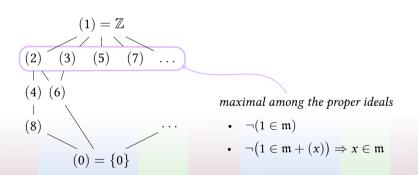
maximal among the proper ideals

•
$$\neg (1 \in \mathfrak{m})$$

•
$$\neg (1 \in \mathfrak{m} + (x)) \Rightarrow x \in \mathfrak{m}$$

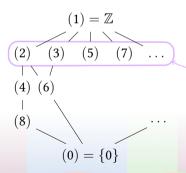
Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} .



Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

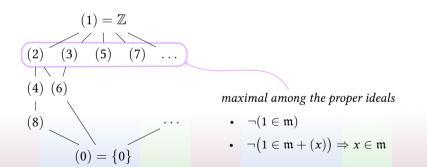


maximal among the proper ideals

- $\neg (1 \in \mathfrak{m})$
- $\neg (1 \in \mathfrak{m} + (x)) \Rightarrow x \in \mathfrak{m}$

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.



Let A be a ring. Does there exist a maximal ideal $\mathfrak{m} \subseteq A$?

Let A be a ring. Does there exist a maximal ideal $\mathfrak{m} \subseteq A$?

1 Yes, if Zorn's lemma is available.

Let A be a ring. Does there exist a maximal ideal $\mathfrak{m} \subseteq A$?

- 1 Yes, if Zorn's lemma is available.
- Yes, if *A* is countable and membership of finitely generated ideals is decidable: Let $A = \{x_0, x_1, \ldots\}$. Then set:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \begin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \not\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$$

Let A be a ring. Does there exist a maximal ideal $\mathfrak{m} \subseteq A$?

- Yes, if Zorn's lemma is available.
- Yes, if *A* is countable and membership of finitely generated ideals is decidable: Let $A = \{x_0, x_1, \ldots\}$. Then set:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \begin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \not\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$$

3 Yes, if *A* is countable (irrespective of membership decidability):

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \mathfrak{m}_n + (\underbrace{\{x \in A \,|\, x = x_n \land 1 \not\in \mathfrak{m}_n + (x_n)\}}_{\text{a certain subsingleton set}})$$

Let A be a ring. Does there exist a maximal ideal $\mathfrak{m} \subseteq A$?

- 1 Yes, if Zorn's lemma is available.
- Yes, if *A* is countable and membership of finitely generated ideals is decidable: Let $A = \{x_0, x_1, \ldots\}$. Then set:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := egin{cases} \mathfrak{m}_n + (x_n), & ext{if } 1
ot\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & ext{else}. \end{cases}$$

3 Yes, if *A* is countable (irrespective of membership decidability):

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \mathfrak{m}_n + (\underbrace{\{x \in A \,|\, x = x_n \land 1 \not\in \mathfrak{m}_n + (x_n)\}}_{\text{a certain subsingleton set}})$$

Let A be a ring. Does there exist a maximal ideal $\mathfrak{m} \subseteq A$?

- Yes, if Zorn's lemma is available.
- Yes, if *A* is countable and membership of finitely generated ideals is decidable: Let $A = \{x_0, x_1, \ldots\}$. Then set:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := egin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \not\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$$

3 Yes, if *A* is countable (irrespective of membership decidability):

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \mathfrak{m}_n + (\underbrace{\{x \in A \mid x = x_n \land 1 \not\in \mathfrak{m}_n + (x_n)\}}_{\text{a certain subsingleton set}})$$

In the general case: No

Let A be a ring. Does there exist a maximal ideal $\mathfrak{m} \subseteq A$?

- 1 Yes, if Zorn's lemma is available.
- Yes, if *A* is countable and membership of finitely generated ideals is decidable: Let $A = \{x_0, x_1, \ldots\}$. Then set:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := egin{cases} \mathfrak{m}_n + (x_n), & ext{if } 1
ot\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & ext{else}. \end{cases}$$

3 Yes, if *A* is countable (irrespective of membership decidability):

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \mathfrak{m}_n + (\underbrace{\{x \in A \mid x = x_n \land 1 \not\in \mathfrak{m}_n + (x_n)\}}_{\text{a certain subsingleton set}})$$

In the general case: No, but yes in a suitable forcing extension

Let A be a ring. Does there exist a maximal ideal $\mathfrak{m} \subseteq A$?

- 1 Yes, if Zorn's lemma is available.
- Yes, if *A* is countable and membership of finitely generated ideals is decidable: Let $A = \{x_0, x_1, \ldots\}$. Then set:

$$\mathfrak{m}_0 := \{0\}, \hspace{1cm} \mathfrak{m}_{n+1} := egin{cases} \mathfrak{m}_n + (x_n), & ext{if } 1
ot\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & ext{else}. \end{cases}$$

Yes, if *A* is countable (irrespective of membership decidability):

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \mathfrak{m}_n + (\underbrace{\{x \in A \,|\, x = x_n \land 1 \not\in \mathfrak{m}_n + (x_n)\}}_{\text{a certain subsingleton set}})$$

In the general case: No, but yes in a *suitable forcing extension*, and *bounded first-order consequences* of its existence there do hold in the base universe.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof (classical). Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof (classical). Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Proof (constructive, special case). Write $M = \begin{pmatrix} x \\ y \end{pmatrix}$. By surjectivity, we have $u, v \in A$ with

$$u\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $v\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Hence
$$1 = (vy)(ux) = (uy)(vx) = 0$$
.

Abstract proofs should be blueprints for concrete ones.

"Every ideal is finitely generated."

"Every ideal is finitely generated."

-What about
$$\{x \in \mathbb{Z} \mid x = 0 \lor \varphi\} \subseteq \mathbb{Z}$$
?

- "Every ideal is finitely generated."
 - -What about $\{x \in \mathbb{Z} \mid x = 0 \lor \varphi\} \subseteq \mathbb{Z}$?
- "Every ascending chain of finitely generated ideals stabilizes, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \mathfrak{a}_{n+2} = \ldots$ "

- "Every ideal is finitely generated."
 - *–What about* $\{x \in \mathbb{Z} \mid x = 0 \lor \varphi\} \subseteq \mathbb{Z}$?
- "Every ascending chain of finitely generated ideals stabilizes, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \mathfrak{a}_{n+2} = \ldots$ "
 - —Even descending sequences of natural numbers might fail to stabilize.

- "Every ideal is finitely generated."
 - *–What about* $\{x \in \mathbb{Z} \mid x = 0 \lor \varphi\} \subseteq \mathbb{Z}$?
- "Every ascending chain of finitely generated ideals stabilizes, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \mathfrak{a}_{n+2} = \ldots$ "
 - —Even descending sequences of natural numbers might fail to stabilize.
- "Every ascending chain of finitely generated ideals stalls, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1}$."

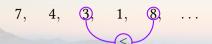
- "Every ideal is finitely generated."
 - *–What about* $\{x \in \mathbb{Z} \mid x = 0 \lor \varphi\} \subseteq \mathbb{Z}$?
- "Every ascending chain of finitely generated ideals stabilizes, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \mathfrak{a}_{n+2} = \ldots$ "
 - —Even descending sequences of natural numbers might fail to stabilize.
- "Every ascending chain of finitely generated ideals stalls, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1}$."
 - -There might not be enough such chains.

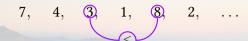
- "Every ideal is finitely generated."
 - -What about $\{x \in \mathbb{Z} \mid x = 0 \lor \varphi\} \subseteq \mathbb{Z}$?
- "Every ascending chain of finitely generated ideals stabilizes, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \mathfrak{a}_{n+2} = \ldots$ "
 - —Even descending sequences of natural numbers might fail to stabilize.
- "Every ascending chain of finitely generated ideals stalls, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1}$."
 - -There might not be enough such chains.
- "Every infinite sequence of ring elements is good, i.e. given x_0, x_1, \ldots , there is a number n such that $x_n \in (x_0, \ldots, x_{n-1})$."

- "Every ideal is finitely generated."
 - -What about $\{x \in \mathbb{Z} \mid x = 0 \lor \varphi\} \subseteq \mathbb{Z}$?
- "Every ascending chain of finitely generated ideals stabilizes, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \mathfrak{a}_{n+2} = \ldots$ "
 - —Even descending sequences of natural numbers might fail to stabilize.
- "Every ascending chain of finitely generated ideals stalls, i.e. given $\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \ldots$, there is a number n such that $\mathfrak{a}_n = \mathfrak{a}_{n+1}$."
 - -There might not be enough such chains.
- "Every infinite sequence of ring elements is good, i.e. given $x_0, x_1, ...$, there is a number n such that $x_n \in (x_0, ..., x_{n-1})$."
 - -There might not be enough such sequences.

 $7, \quad 4, \quad 3, \quad \dots$

 $7, \quad 4, \quad 3, \quad 1, \quad \dots$



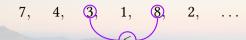


Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \leq \alpha(j)$.

7, 4, 3, 1, 8, 2, ...

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$.

Proof. (offensive?) By LEM, there is a minimum $\alpha(i)$. Set j := i + 1.

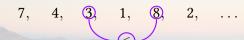


Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$.

Proof. (offensive?) By LEM, there is a minimum $\alpha(i)$. Set j := i + 1.

Def. A preorder *X* is well iff every sequence $\mathbb{N} \to X$ is good.

Examples. (\mathbb{N}, \leq) , $X \times Y$, X^* , Tree(X).

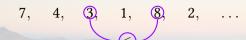


Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \leq \alpha(j)$.

Proof. (offensive?) By LEM, there is a minimum $\alpha(i)$. Set j := i + 1.

Def. A preorder *X* is well iff every sequence $\mathbb{N} \to X$ is good.

Examples.
$$(\mathbb{N}, \leq)$$
, $X \times Y$, X^* , $\text{Tree}(X)$.



Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \leq \alpha(j)$.

Proof. (offensive?) By LEM, there is a minimum $\alpha(i)$. Set j := i + 1.

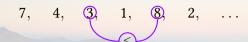
Def. A preorder *X* is well iff every sequence $\mathbb{N} \to X$ is good.

Examples. (\mathbb{N}, \leq) , $X \times Y$, X^* , Tree(X).

only classically

Don't quantify over points of spaces which might not have enough.

Infinite data



Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$.

Proof. (offensive?) By LEM, there is a minimum
$$\alpha(i)$$
. Set $j := i + 1$.

Def. A preorder X is **well*** iff every sequence $\mathbb{N} \to X$ is good.

Examples.
$$(\mathbb{N}, \leq)$$
, $X \times Y$, X^* , $\text{Tree}(X)$.

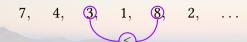
only classically

Don't quantify over points of spaces which might not have enough.

Def. A preorder is **well** iff any of the following equivalent conditions hold:

1 The **generic sequence** $\mathbb{N} \to X$ is good.

Infinite data



Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$.

Proof. (offensive?) By LEM, there is a minimum
$$\alpha(i)$$
. Set $j := i + 1$.

Def. A preorder X is **well*** iff every sequence $\mathbb{N} \to X$ is good.

Examples.
$$(\mathbb{N}, \leq)$$
, $\underbrace{X \times Y, \ X^*, \ \operatorname{Tree}(X)}_{\text{only classically}}$ $\underbrace{Don't \ quantify \ over \ points \ of \ spaces}_{\text{which might not have enough.}}$

Def. A preorder is well iff any of the following equivalent conditions hold:

- **1** The **generic sequence** $\mathbb{N} \to X$ is good.
- **2** Every sequence $\mathbb{N} \to X$ in every forcing extension is good.

Infinite data

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$.

Proof. (offensive?) By LEM, there is a minimum
$$\alpha(i)$$
. Set $j := i + 1$.

Def. A preorder X is **well*** iff every sequence $\mathbb{N} \to X$ is good.

Examples.
$$(\mathbb{N}, \leq)$$
, $\underbrace{X \times Y, X^*, \operatorname{Tree}(X)}_{\text{only classically}}$ $\underbrace{Don't \ quantify \ over \ points \ of \ spaces}_{\text{which might not have enough.}}$

Def. A preorder is well iff any of the following equivalent conditions hold:

- **1** The **generic sequence** $\mathbb{N} \to X$ is good.
- **2** Every sequence $\mathbb{N} \to X$ in every forcing extension is good.
- There is a well-founded tree witnessing universal goodness.

Ingredients for forcing

To construct a forcing extension, we require:

- 1 a base universe *V*
- **2** a preorder *L* of **forcing conditions** in *V*, pictured as **finite approximations** (*convention*: $\tau \leq \sigma$ means that τ is a better finite approximation than σ)
- a covering system governing how finite approximations evolve to better ones (for each $\sigma \in L$, a set $Cov(\sigma) \subseteq P(\downarrow \sigma)$, with a simulation condition)

In the forcing extension V^{∇} , there will then be a **generic filter** (ideal object).

Ingredients for forcing

To construct a forcing extension, we require:

- 1 a base universe V
- **2** a preorder L of **forcing conditions** in V, pictured as **finite approximations** (*convention*: $\tau \leq \sigma$ means that τ is a better finite approximation than σ)
- **3** a **covering system** governing how finite approximations evolve to better ones (for each $\sigma \in L$, a set $Cov(\sigma) \subseteq P(\downarrow \sigma)$, with a simulation condition)

In the forcing extension V^{∇} , there will then be a **generic filter** (ideal object).

For the generic surjection $\mathbb{N} \to X$

Use **finite lists** $\sigma \in X^*$ as forcing conditions, where $\tau \leq \sigma$ iff σ is an initial segment of τ , and be prepared to grow σ to ...

- (a) one of $\{\sigma x \mid x \in X\}$, to make σ more defined
- (b) one of $\{\sigma\tau \mid \tau \in X^*, a \in \sigma\tau\}$, for any $a \in X$, to make σ more surjective

Ingredients for forcing

To construct a forcing extension, we require:

- **1** a base universe *V*
- 2 a preorder L of forcing conditions in V, pictured as finite approximations (convention: $\tau \leq \sigma$ means that τ is a better finite approximation than σ)
- a covering system governing how finite approximations evolve to better ones (for each $\sigma \in L$, a set $Cov(\sigma) \subseteq P(\downarrow \sigma)$, with a simulation condition)

In the forcing extension V^{∇} , there will then be a **generic filter** (ideal object).

For the generic surjection $\mathbb{N} \to X$

Use **finite lists** $\sigma \in X^*$ as forcing conditions, where $\tau \preccurlyeq \sigma$ iff σ is an initial segment of τ , and be prepared to grow σ to ...

- (a) one of $\{\sigma x \mid x \in X\}$, to make σ more defined
- (b) one of $\{\sigma\tau \mid \tau \in X^*, a \in \sigma\tau\}$, for any $a \in X$, to make σ more surjective

For the generic prime ideal of a ring A

Use **f.g. ideals** as forcing conditions, where $\mathfrak{b} \preccurlyeq \mathfrak{a}$ iff $\mathfrak{b} \supseteq \mathfrak{a}$, and be prepared to grow \mathfrak{a} to ...

- (a) one of \emptyset , if $1 \in \mathfrak{a}$, to make \mathfrak{a} more proper
- (b) one of $\{a + (x), a + (y)\}$, if $xy \in a$, to make a more prime

The eventually monad

Let *L* be a forcing notion.

Let *P* be a monotone predicate on *L* (if $\tau \preccurlyeq \sigma$, then $P\sigma \Rightarrow P\tau$). For instance, in the case $L = X^*$:

- Repeats $x_0 \dots x_{n-1} :\equiv \exists i. \exists j. i < j \land x_i = x_j$
- Good $x_0 \dots x_{n-1} :\equiv \exists i. \exists j. i < j \land x_i \le x_i$ (for some preorder \le on X)

The eventually monad

Let *L* be a forcing notion.

Let *P* be a monotone predicate on *L* (if $\tau \leq \sigma$, then $P\sigma \Rightarrow P\tau$). For instance, in the case $L = X^*$:

- Repeats $x_0 \dots x_{n-1} :\equiv \exists i. \exists j. i < j \land x_i = x_j$
- Good $x_0 \dots x_{n-1} :\equiv \exists i. \exists j. i < j \land x_i \le x_j$ (for some preorder \le on X)

We then define " $P \mid \sigma$ " ("P bars σ ") inductively by the following clauses:

- If $P\sigma$, then $P \mid \sigma$.
- If $P \mid \tau$ for all $\tau \in R$, where R is some covering of σ , then $P \mid \sigma$.

So $P \mid \sigma$ expresses in a direct inductive fashion:

"No matter how σ evolves to a better approximation τ , eventually $P\tau$ will hold."

The eventually monad

Let *L* be a forcing notion.

Let *P* be a monotone predicate on *L* (if $\tau \leq \sigma$, then $P\sigma \Rightarrow P\tau$). For instance, in the case $L = X^*$:

- Repeats $x_0 \dots x_{n-1} :\equiv \exists i. \exists j. i < j \land x_i = x_j$
- Good $x_0 \dots x_{n-1} :\equiv \exists i. \exists j. i < j \land x_i \le x_j$ (for some preorder \le on X)

We then define " $P \mid \sigma$ " ("P bars σ ") inductively by the following clauses:

- If $P\sigma$, then $P \mid \sigma$.
- If $P \mid \tau$ for all $\tau \in R$, where R is some covering of σ , then $P \mid \sigma$.

So $P \mid \sigma$ expresses in a direct inductive fashion:

"No matter how σ evolves to a better approximation τ , eventually $P\tau$ will hold."

We use quantifier-like notation: " $\nabla(\tau \leq \sigma)$. $P\tau$ " means " $P \mid \sigma$ ".

Proof translations

Thm. Every IQC-proof remains correct, with at most a polynomial increase in length, if throughout we replace

Proof translations

Thm. Every IQC-proof remains correct, with at most a polynomial increase in length, if throughout we replace

When we say: some statement "holds in $V^{\neg \neg}$ ", we mean: its translation holds in V.

Similarly for arbitrary forcing extensions V^{∇} , "just with ∇ instead of $\neg\neg$ ".

Proof translations

Thm. Every IQC-proof remains correct, with at most a polynomial increase in length, if throughout we replace

When we say: some statement "holds in $V^{\neg \neg}$ ", we mean: its translation holds in V.

Similarly for arbitrary forcing extensions V^{∇} , "just with ∇ instead of $\neg\neg$ ".

Ex. As $\neg\neg(\varphi \lor \neg\varphi)$ is a theorem of IQC , the law of excluded middle holds in $V^{\neg\neg}$.

The ∇ -translation

For bounded first-order formulas over the (large) first-order signature which has

- one sort *X* for each set *X* in the base universe,
- one *n*-ary function symbol $f: \underline{X_1} \times \cdots \times X_n \to \underline{Y}$ for each map $f: X_1 \times \cdots \times X_n \to Y$,
- one *n*-ary relation symbol $\underline{R} \hookrightarrow X_1 \times \cdots \times X_n$ for each relation $R \subseteq X_1 \times \cdots \times X_n$, and
- 4 an additional unary relation symbol $G \hookrightarrow \underline{L}$ (for the *generic filter* of L),

we recursively define:

$$\begin{array}{lllll} \sigma \vDash s = t & \text{iff} & \nabla \sigma. \, \llbracket s \rrbracket = \llbracket t \rrbracket. & \sigma \vDash \underline{R}(s_1, \ldots, s_n) \, \text{iff} & \nabla \sigma. \, R(\llbracket s_1 \rrbracket, \ldots, \llbracket s_n \rrbracket). \\ \sigma \vDash \varphi \Rightarrow \psi & \text{iff} & \forall (\tau \preccurlyeq \sigma). \, (\tau \vDash \varphi) \Rightarrow (\tau \vDash \psi). & \sigma \vDash G\tau & \text{iff} & \nabla \sigma. \, \sigma \preccurlyeq \llbracket \tau \rrbracket. \\ \sigma \vDash \top & \text{iff} & \top. & \sigma \vDash \bot & \text{iff} & \nabla \sigma. \, \bot \\ \sigma \vDash \varphi \land \psi & \text{iff} & (\sigma \vDash \varphi) \land (\sigma \vDash \psi). & \sigma \vDash \varphi \lor \psi & \text{iff} & \nabla \sigma. \, (\sigma \vDash \varphi) \lor (\sigma \vDash \psi). \\ \sigma \vDash \forall (x : \underline{X}). \varphi & \text{iff} & \forall (\tau \preccurlyeq \sigma). \, \forall (x_0 \in X). \, \tau \vDash \varphi [\underline{x_0}/x]. & \sigma \vDash \exists (x : \underline{X}). \varphi & \text{iff} & \nabla \sigma. \, \exists (x_0 \in X). \, \sigma \vDash \varphi [\underline{x_0}/x]. \end{array}$$

Finally, we say that φ "holds in V^{∇} " iff for all $\sigma \in L$, $\sigma \vDash \varphi$.

forcing notion	statement about V^{∇}	external meaning
$\overline{\text{surjection } \mathbb{N} \twoheadrightarrow X}$	"the gen. surj. is surjective"	$\forall (\sigma \in X^*). \forall (a \in X). \nabla(\tau \preccurlyeq \sigma). \exists (n \in \mathbb{N}). \tau[n] = a.$

The ∇ -translation

forcing notion	statement about V^{∇}	external meaning
$\overline{\text{surjection } \mathbb{N} \twoheadrightarrow X}$	"the gen. surj. is surjective"	$\forall (\sigma \in X^*). \ \forall (a \in X). \ \nabla (\tau \preccurlyeq \sigma). \ \exists (n \in \mathbb{N}). \ \tau[n] = a.$
$\operatorname{map} \mathbb{N} \to X$	"the gen. sequence is good"	Good [].
frame of opens	"every complex number has a square root"	For every open $U \subseteq X$ and every cont. function $f: U \to \mathbb{C}$, there is an open covering $U = \bigcup_i U_i$ such that for each index i , there is a cont. function $g: U_i \to \mathbb{C}$ such that $g^2 = f$.
big Zariski	" $x \neq 0 \Rightarrow x \text{ inv.}$ "	If the only f.p. k -algebra in which $x=0$ is the zero algebra, then x is invertible in k .

The ∇ -translation

$\sigma \vDash s = t$ $\sigma \vDash \varphi \Rightarrow \psi$ $\sigma \vDash \top$ $\sigma \vDash \varphi \land \psi$ $\sigma \vDash \forall (x : \underline{X}). \varphi$	ifi ifi ifi	$ \begin{array}{l} \nabla \sigma. \llbracket s \rrbracket = \llbracket t \rrbracket. \\ \forall (\tau \preccurlyeq \sigma). (\tau \vDash \varphi) \Rightarrow (\tau \vDash \psi). \\ & \top. \\ (\sigma \vDash \varphi) \wedge (\sigma \vDash \psi). \\ \forall (\tau \preccurlyeq \sigma). \forall (x_0 \in X). \tau \vDash \varphi[\underline{x_0}/x]. \end{array} $	$ \sigma \vDash \underline{R}(s_1, \dots, s_n) \text{ iff } \nabla \sigma. R(\llbracket s_1 \rrbracket, \dots, \llbracket s_n \rrbracket). $ $ \sigma \vDash G\tau \qquad \text{iff } \nabla \sigma. \sigma \preccurlyeq \llbracket \tau \rrbracket. $ $ \sigma \vDash \bot \qquad \text{iff } \nabla \sigma. \bot $ $ \sigma \vDash \varphi \lor \psi \qquad \text{iff } \nabla \sigma. (\sigma \vDash \varphi) \lor (\sigma \vDash \psi). $ $ \sigma \vDash \exists (x : \underline{X}). \varphi \qquad \text{iff } \nabla \sigma. \exists (x_0 \in X). \sigma \vDash \varphi[\underline{x_0}/x]. $	
forcing notion		statement about V^{∇}	external meaning	
surjection $\mathbb{N} \to \mathcal{X}$	X	"the gen. surj. is surjective"	$\forall (\sigma \in X^*). \ \forall (a \in X). \ \nabla(\tau \preccurlyeq \sigma). \ \exists (n \in \mathbb{N}). \ \tau[n] = a.$	
$\operatorname{map} \mathbb{N} \to X$		"the gen. sequence is good"	Good [].	
frame of opens		"every complex number has a square root"	For every open $U \subseteq X$ and every cont. function $f: U \to \mathbb{C}$, there is an open covering $U = \bigcup_i U_i$ such that for each index i , there is a cont. function $g: U_i \to \mathbb{C}$ such that $g^2 = f$.	
big Zariski		" $x \neq 0 \Rightarrow x$ inv."	If the only f.p. k -algebra in which $x=0$ is the zero algebra, then x is invertible in k .	
little Zariski		"every f.g. vector space does	Grothendieck's generic freeness lemma	

not not have a basis"

Outlook

Passing to and from extensions

Thm. Let φ be a **bounded first-order formula** not mentioning G. In each of the following situations, we have that φ holds in V^{∇} iff φ holds in V:

- **I** *L* and all coverings are inhabited (proximality).
- 2 L contains a top element, every covering of the top element is inhabited, and φ is a coherent implication (positivity).

The mystery of nongeometric sequents

The **generic ideal** of a ring is maximal: $(x \in \mathfrak{a} \Rightarrow 1 \in \mathfrak{a}) \Longrightarrow 1 \in \mathfrak{a} + (x)$.

The **generic ring** is a field:

 $(x = 0 \Rightarrow 1 = 0) \Longrightarrow (\exists y. xy = 1).$

Traveling the multiverse ...

LEM is a **switch** and **holds positively**; being countable is a **button**.

Every instance of DC holds proximally.

A geometric implication is provable iff it holds **everywhere**.

... upwards, but always keeping ties to the base. 10/10

Formalities

Def. A forcing notion consists of a preorder L of forcing conditions, and for every $\sigma \in L$, a set $Cov(\sigma) \subseteq P(\downarrow \sigma)$ of coverings of σ such that: If $\tau \preccurlyeq \sigma$ and $R \in Cov(\sigma)$, there should be a covering $S \in Cov(\tau)$ such that $S \subseteq \downarrow R$.

	preorder L	coverings of an element $\sigma \in L$	filters of <i>L</i>
1	X^* X^*	$\{\sigma x \mid x \in X\} $ $\{\sigma x \mid x \in X\}, \ \{\sigma \tau \mid \tau \in X^*, a \in \sigma \tau\} \text{ for each } a \in X$	$\begin{array}{c} \operatorname{maps} \mathbb{N} \to X \\ \operatorname{surjections} \mathbb{N} \twoheadrightarrow X \end{array}$
3	f.g. ideals f.g. ideals	$- \{\sigma + (a), \sigma + (b)\} \text{ for each } ab \in \sigma, \{\} \text{ if } 1 \in \sigma$	ideals prime ideals
5	opens {*}	\mathcal{U} such that $\sigma = \bigcup \mathcal{U}$ $\{\star \mid \varphi\} \cup \{\star \mid \neg \varphi\}$	points witnesses of LEM

Def. A *filter* of a forcing notion (L, Cov) is a subset $F \subseteq L$ such that

- **1** *F* is upward-closed: if $\tau \leq \sigma$ and if $\tau \in F$, then $\sigma \in F$;
- **2** *F* is downward-directed: *F* is inhabited, and if $\alpha, \beta \in F$, then there is a common refinement $\sigma \preccurlyeq \alpha, \beta$ such that $\sigma \in F$; and
- F splits the covering system: if $\sigma \in F$ and $R \in Cov(\sigma)$, then $\tau \in F$ for some $\tau \in R$.