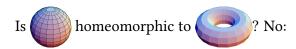
Revisiting divisible, injective and flabby abelian groups from a constructive point of view

an invitation –



$$H^0(\bigcirc, \mathbb{Z}) \cong \mathbb{Z}$$
 $H^1(\bigcirc, \mathbb{Z}) \cong 0$ $H^2(\bigcirc, \mathbb{Z}) \cong \mathbb{Z}$ $H^0(\bigcirc, \mathbb{Z}) \cong \mathbb{Z}$ $H^1(\bigcirc, \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$ $H^2(\bigcirc, \mathbb{Z}) \cong \mathbb{Z}$

Basic tool for sheaf cohomology and derived functors: injective resolutions

Prop. There are irrational numbers x, y with x^y rational.

Proof. Either $\sqrt{2}^{\sqrt{2}}$ is rational or not. In the first case we are done. In the second case we set $x := \sqrt{2}^{\sqrt{2}}$ and $y := \sqrt{2}$.

Prop. There are **irrational** numbers x, y with x^y **rational**.

Proof. Either $\sqrt{2}^{\sqrt{2}}$ is rational or not. In the first case we are done. In the second case we set $x := \sqrt{2}^{\sqrt{2}}$ and $y := \sqrt{2}$.

No effective procedure described by the proof.

Prop. There are irrational numbers x, y with x^y rational.

Proof. Either $\sqrt{2}^{\sqrt{2}}$ is rational or not. In the first case we are done. In the second case we set $x := \sqrt{2}^{\sqrt{2}}$ and $y := \sqrt{2}$.

No effective procedure described by the proof. Contrast with:

Thm. Let $A \in K^{n \times m}$, $b \in K^n$. Then the set $\{x \in K^m \mid Ax = b\}$ is either empty or of the form $x_0 + \operatorname{span}(v_1, \dots, v_\ell)$.

Proof. By elementary row transformations, we can ...

Prop. There are **irrational** numbers x, y with x^y **rational**.

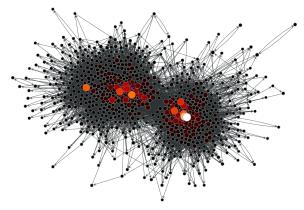
Proof. Either $\sqrt{2}^{\sqrt{2}}$ is rational or not. In the first case we are done. In the second case we set $x := \sqrt{2}^{\sqrt{2}}$ and $y := \sqrt{2}$.

No effective procedure described by the proof. Contrast with:

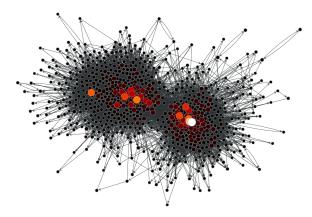
Thm. Let $A \in K^{n \times m}$, $b \in K^n$. Then the set $\{x \in K^m \mid Ax = b\}$ is either empty or of the form $x_0 + \operatorname{span}(v_1, \dots, v_\ell)$.

Proof. By elementary row transformations, we can ...

- **Constructively**, we work without LEM, AC and ZORN.
- Constructive proofs always yield algorithms and global versions for continuous families.
- **Solution** Concrete classical results can always be constructivized: If ZFC proves an arithmetical Π_2^0 -statement, so does IZF.



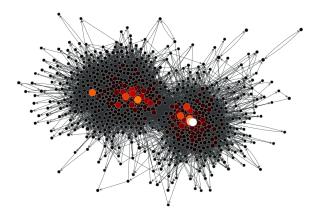
local "Every real symmetric matrix does have an eigenvector." ✓
global "For every continuous family of symmetric matrices,
eigenvectors can locally be picked continuously." ?



local "Every real symmetric matrix does have an eigenvector." ✓

global "For every continuous family of symmetric matrices, eigenvectors can locally be picked continuously."?

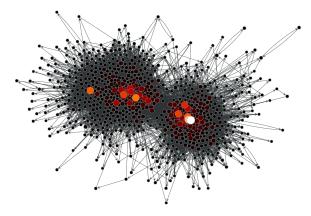
"Let X be a topological space and let $A: X \to M_n^{\rm sym}(\mathbb{R})$ be a continuous map to the space of symmetric $(n \times n)$ -matrices. Then there is an open covering $\bigcup_{i \in I} U_i$ of X such that or all indices $i \in I$, there is a continuous map $v: U_i \to \mathbb{R}^n$ such that for all $x \in U_i$, the vector v(x) is an eigenvector of A(x)."



local "Every real symmetric matrix does have an eigenvector." ✓

global "For every continuous family of symmetric matrices, eigenvectors can locally be picked continuously." X

"Let X be a topological space and let $A: X \to M_n^{\mathrm{sym}}(\mathbb{R})$ be a continuous map to the space of symmetric $(n \times n)$ -matrices. Then there is an open covering $\bigcup_{i \in I} U_i$ of X such that or all indices $i \in I$, there is a continuous map $v: U_i \to \mathbb{R}^n$ such that for all $x \in U_i$, the vector v(x) is an eigenvector of A(x)."

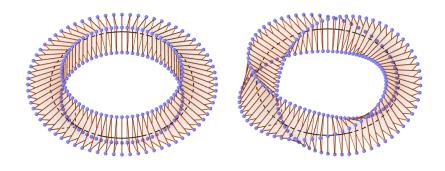


local "Every real symmetric matrix does **not not** have an eigenvector." ✓

global "For every continuous family of symmetric matrices, on a dense open eigenvectors can locally be picked continuously." ✓

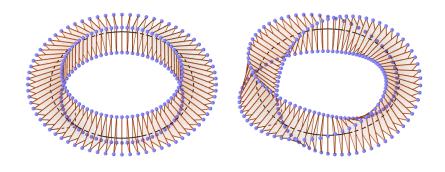
"Let X be a topological space and let $A:X\to M^{\mathrm{sym}}_n(\mathbb{R})$ be a continuous map to the space

of symmetric $(n \times n)$ -matrices. Then there is an open covering $\bigcup_{i \in I} U_i$ of a dense open **subset** $U \subseteq X$ such that or all indices $i \in I$, there is a continuous map $v : U_i \to \mathbb{R}^n$ such that for all $x \in U_i$, the vector v(x) is an eigenvector of A(x)."



local "Let M be a finitely generated module over a field k. Then M is finite free." \checkmark

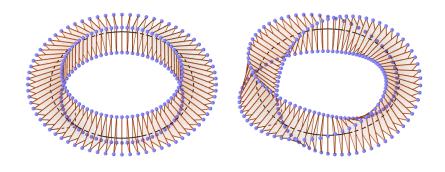
global "Let M be a finitely generated module over a ring A. Then M^{\sim} is finite locally free." ?



local "Let M be a finitely generated module over a field k. Then M is finite free." \checkmark

global "Let M be a finitely generated module over a ring A. Then M^{\sim} is finite locally free." ?

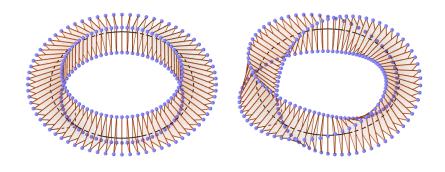
"Let M be a finitely generated module over an arbitrary commutative ring A. Then there is a partition $1 = f_1 + \cdots + f_n \in A$ of unity such that, for each index i, the localized module $M[f_i^{-1}]$ is finite free over $A[f_i^{-1}]$."



local "Let M be a finitely generated module over a field k. Then M is finite free." \checkmark

global "Let M be a finitely generated module over a ring A. Then M^{\sim} is finite locally free." \nearrow

"Let M be a finitely generated module over an arbitrary commutative ring A. Then there is a partition $1 = f_1 + \cdots + f_n \in A$ of unity such that, for each index i, the localized module $M[f_i^{-1}]$ is finite free over $A[f_i^{-1}]$."



local "Let M be a finitely generated module over a field k. Then M is **not not** finite free." \checkmark

global "Let M be a finitely generated module over a ring A. Then M^{\sim} is finite locally free on a dense open." \checkmark

"Let M be a finitely generated module over an arbitrary commutative ring A. If f = 0 is the only element of A such that $M[f^{-1}]$ is finite free over $A[f^{-1}]$, then 1 = 0 in A."

local "Let R be a ring. Let $n \ge 0$ be an integer. We have

$$H^q(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}_p^n}(d)) = (omitted)$$

as *R*-modules." ✓

global "Let S be a scheme. Let $n \ge 1$. Let $\mathcal E$ be a finite locally free $\mathcal O_S$ -module of constant rank n+1. For the structure morphism $\pi: \mathbf P(\mathcal E) \longrightarrow S$, we have

$$R^q \pi_*(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(d)) = (omitted)$$

as sheaves of \mathcal{O}_S -modules." \checkmark

Def. A group I is divisible iff for every element $x \in I$ and every $n \in \mathbb{N}_{>0}$, there is an element $y \in I$ such that ny = x.

Examples. $\mathbb{Q}, \mathbb{Q}/\mathbb{Z}, \mathbb{Z}(p^{\infty}).$

Def. A group *I* is **divisible** iff for every element $x \in I$ and every $n \in \mathbb{N}_{>0}$, there is an element $y \in I$ such that ny = x.

Examples. $\mathbb{Q}, \mathbb{Q}/\mathbb{Z}, \mathbb{Z}(p^{\infty})$.

1 LEM+ZORN

Every divisible group is injective.

- ☑ There are models of zF without nontrivial injective groups. [Blass]
- 3 Every group embeds into a divisible group.

Def. A group *I* is **divisible** iff for every element $x \in I$ and every $n \in \mathbb{N}_{>0}$, there is an element $y \in I$ such that ny = x. *Examples.* \mathbb{Q} , \mathbb{Q}/\mathbb{Z} , $\mathbb{Z}(p^{\infty})$.

1 LEM+ZORN

Every divisible group is injective.

- There are models of zF without nontrivial injective groups. [Blass]
- Every group embeds into a divisible group. *Proof.* If $A \cong \mathbb{Z}\langle M \rangle / R$, then $A \hookrightarrow \mathbb{Q}\langle M \rangle / R$.

- **1** a LEM Every divisible group has the Baer property.
 - **D ZORN** Every group with the Baer property is injective.
- There are models of zF without nontrivial injective groups. [Blass]
- Every group embeds into a divisible group. *Proof.* If $A \cong \mathbb{Z}\langle M \rangle / R$, then $A \hookrightarrow \mathbb{Q}\langle M \rangle / R$.

... is Baer iff extensions exist for all ideal inclusions $\mathfrak{a} \hookrightarrow \mathbb{Z}$.

- **1 a** LEM Every divisible group has the Baer property.
 - **D ZORN** Every group with the Baer property is injective.
- There are models of zF without nontrivial injective groups. [Blass]
- Every group embeds into a divisible group. *Proof.* If $A \cong \mathbb{Z}\langle M \rangle / R$, then $A \hookrightarrow \mathbb{Q}\langle M \rangle / R$.

... is **Baer** iff extensions exist for all ideal inclusions $\mathfrak{a} \hookrightarrow \mathbb{Z}$.

- **I** LEM Every divisible group has the Baer property.
 - **DOTA:** Every group with the Baer property is injective. *Proof.* Let $f_0: B_0 \to I$ be an extension.

... is **Baer** iff extensions exist for all ideal inclusions $\mathfrak{a} \hookrightarrow \mathbb{Z}$.

- **I** LEM Every divisible group has the Baer property.
 - **D ZORN** Every group with the Baer property is injective. *Proof.* Let $f_0: B_0 \to I$ be an extension. Let $x \in B$.

... is **Baer** iff extensions exist for all ideal inclusions $\mathfrak{a} \hookrightarrow \mathbb{Z}$.

Def. A group *I* is **divisible** iff for every element $x \in I$ and every $n \in \mathbb{N}_{>0}$, there is an element $y \in I$ such that ny = x. *Examples.* \mathbb{Q} , \mathbb{Q}/\mathbb{Z} , $\mathbb{Z}(p^{\infty})$.

- **1 a LEM** Every divisible group has the Baer property.
 - **D ZORN** Every group with the Baer property is injective.

Proof. Let $f_0: B_0 \to I$ be an extension. Let $x \in B$. Set $\mathfrak{a} = \{n \in \mathbb{Z} \mid nx \in B_0\}$.

... is **Baer** iff extensions exist for all ideal inclusions $\mathfrak{a} \hookrightarrow \mathbb{Z}$.

Def. A group *I* is **divisible** iff for every element $x \in I$ and every $n \in \mathbb{N}_{>0}$, there is an element $y \in I$ such that ny = x.

Examples. \mathbb{Q} , \mathbb{Q}/\mathbb{Z} , $\mathbb{Z}(p^{\infty})$.

- **1 a LEM** Every divisible group has the Baer property.
 - **D ZORN** Every group with the Baer property is injective.

Proof. Let $f_0: B_0 \to I$ be an extension. Let $x \in B$. Set $\mathfrak{a} = \{n \in \mathbb{Z} \mid nx \in B_0\}$.

The map $g: \mathfrak{a} \to I$, $n \mapsto f_0(nx)$ can be extended to a map $\overline{g}: \mathbb{Z} \to I$.

... is Baer iff extensions exist for all ideal inclusions $\mathfrak{a} \hookrightarrow \mathbb{Z}$.

Def. A group I is divisible iff for every element $x \in I$ and every $n \in \mathbb{N}_{>0}$, there is an element $y \in I$ such that ny = x. Examples. $\mathbb{Q}, \mathbb{Q}/\mathbb{Z}, \mathbb{Z}(p^{\infty}).$

- **LEM** Every divisible group has the Baer property.
 - **D ZORN** Every group with the Baer property is injective. *Proof.* Let $f_0: B_0 \to I$ be an extension. Let $x \in B$. Set $\mathfrak{a} = \{n \in \mathbb{Z} \mid nx \in B_0\}$.

The map $g: \mathfrak{a} \to I$, $n \mapsto f_0(nx)$ can be extended to a map $\overline{g}: \mathbb{Z} \to I$.

Hence f_0 can be extended to the map $B_0 + (x) \to I$, $u + nx \mapsto f_0(u) + \overline{g}(n)$.

The set \mathbb{N} is $\neg\neg$ -separated in that

$$\forall x, y : \mathbb{N}. \neg \neg (x = y) \Rightarrow x = y,$$
 "continuous \mathbb{N} -valued functions which agree on a dense open agree everywhere"

The set \mathbb{N} is $\neg\neg$ -separated in that

$$\forall x, y : \mathbb{N}. \neg \neg (x = y) \Rightarrow x = y,$$
 "continuous \mathbb{N} -valued functions which agree on a dense open agree everywhere"

but not a ¬¬-sheaf, which would mean

$$\forall S \subseteq \mathbb{N}. \neg \neg (S \text{ singleton}) \Rightarrow \exists !x : \mathbb{N}. \neg \neg (x \in S).$$
 "continuous \mathbb{N} -valued functions defined on a dense open can be extended to all of the space"

The set \mathbb{N} is $\neg\neg$ -separated in that

$$\forall x, y : \mathbb{N}. \neg \neg (x = y) \Rightarrow x = y,$$
 "continuous \mathbb{N} -valued functions which agree on a dense open agree everywhere"

but not a ¬¬-sheaf, which would mean

$$\forall S \subseteq \mathbb{N}. \neg \neg (S \text{ singleton}) \Rightarrow \exists !x : \mathbb{N}. \neg \neg (x \in S).$$
 "continuous \mathbb{N} -valued functions defined on a dense open can be extended to all of the space"

Sheafify:
$$\mathbb{N}^+ := \{ S \subseteq \mathbb{N} \mid \neg \neg (S \text{ singleton}) \} / \sim \text{with } S \sim T : \Leftrightarrow \neg \neg (S = T)$$

The set \mathbb{N} is $\neg\neg$ -separated in that

$$\forall x, y \colon \mathbb{N}. \neg \neg (x = y) \Rightarrow x = y,$$
 "continuous \mathbb{N} -valued functions which agree on a dense open agree everywhere"

but not a ¬¬-sheaf, which would mean

$$\forall S \subseteq \mathbb{N}. \neg \neg (S \text{ singleton}) \Rightarrow \exists !x : \mathbb{N}. \neg \neg (x \in S).$$
 "continuous \mathbb{N} -valued functions defined on a

dense open can be extended to all of the space"

Sheafify:
$$\mathbb{N}^+ := \{ S \subseteq \mathbb{N} \mid \neg \neg (S \text{ singleton}) \} / \sim \text{with } S \sim T : \Leftrightarrow \neg \neg (S = T)$$

- **Prop.** The group $(\mathbb{Q}/\mathbb{Z})^+$ has the Baer property.
- **2 Lemma. ZORN** Let *A* be a group. Let $x_0 \in A$. Then there is an uncanonical map $i: A \to (\mathbb{Q}/\mathbb{Z})^+$ such that $i(x_0) = 0 \Rightarrow \neg \neg (x_0 = 0)$.
- **Thm.** Every group canonically maps to a Baer group, and with **ZORN**, this map is injective.

Perspectives

The existence of enough injectives requires only **ZORN**, not **LEM** or **AC**, and is hence **constructively neutral**.

Assuming **ZORN** on the metalevel, it also holds for continuous families.

Perspectives

The existence of enough injectives requires only **ZORN**, not **LEM** or **AC**, and is hence **constructively neutral**.

Assuming **ZORN** on the metalevel, it also holds for continuous families.

Still not fully computational. Cohomology still requires fixing a universe of sets.

Perspectives

The existence of enough injectives requires only **ZORN**, not **LEM** or **AC**, and is hence **constructively neutral**.

Assuming **ZORN** on the metalevel, it also holds for continuous families.

Still not fully computational. Cohomology still requires fixing a universe of sets.

Resolve issue by doing without injectives, inspired by **Emily Riehl**.

