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Cohomology

Is homeomorphic to ? No:

H 0( ,Z) ∼= Z H 1( ,Z) ∼= 0 H 2( ,Z) ∼= Z
H 0( ,Z) ∼= Z H 1( ,Z) ∼= Z⊕ Z H 2( ,Z) ∼= Z

Basic tool for sheaf cohomology and derived functors:
injective resolutions
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Integrated development?

Prop. There are irrational numbers x, y with xy rational.

Proof. Either
√
2

√
2

is rational or not. In the first case we are done. In

the second case we set x :=
√
2

√
2

and y :=
√
2.

No effective procedure described by the proof. Contrast with:

Thm. Let A ∈ Kn×m
, b ∈ Kn

. Then the set {x ∈ Km |Ax = b}
is either empty or of the form x0 + span(v1, . . . , vℓ).
Proof. By elementary row transformations, we can . . .

1 Constructively, we work without lem , ac and zorn .

2 Constructive proofs always yield algorithms and global
versions for continuous families.

3 Concrete classical results can always be constructivized:
If zfc proves an arithmetical Π0

2
-statement, so does izf.
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local “Every real symmetric matrix does have an eigenvector.” ✓

global “For every continuous family of symmetric matrices,

eigenvectors can locally be picked continuously.”

“Let X be a topological space and let A : X → Msym

n (R) be a continuous map to the space

of symmetric (n× n)-matrices. Then there is an open covering

⋃
i∈I Ui of X such that or all

indices i ∈ I , there is a continuous map v : Ui → Rn
such that for all x ∈ Ui , the vector v(x) is

an eigenvector of A(x).”
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local “Every real symmetric matrix does not not have an eigenvector.” ✓

global “For every continuous family of symmetric matrices,

on a dense open eigenvectors can locally be picked continuously.” ✓
“Let X be a topological space and let A : X → Msym

n (R) be a continuous map to the space

of symmetric (n × n)-matrices. Then there is an open covering

⋃
i∈I Ui of a dense open

subset U ⊆ X such that or all indices i ∈ I , there is a continuous map v : Ui → Rn
such that

for all x ∈ Ui , the vector v(x) is an eigenvector of A(x).”
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local “Let M be a finitely generated module over a field k.
Then M is finite free.” ✓

global “Let M be a finitely generated module over a ring A.
Then M∼

is finite locally free.”

“Let M be a finitely generated module over an arbitrary commutative ring A. Then there is a

partition 1 = f1+ · · ·+ fn ∈ A of unity such that, for each index i, the localized moduleM[f−1

i ]

is finite free over A[f−1

i ].”
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local “Let M be a finitely generated module over a field k.
Then M is not not finite free.” ✓

global “Let M be a finitely generated module over a ring A.
Then M∼

is finite locally free on a dense open.” ✓
“Let M be a finitely generated module over an arbitrary commutative ring A. If f = 0 is the
only element of A such that M[f−1] is finite free over A[f−1], then 1 = 0 in A.”
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local “Let R be a ring. Let n ≥ 0 be an integer. We have

Hq(Pn,OPn
R
(d)) = (omitted)

as R-modules.” ✓

global “Let S be a scheme. Let n ≥ 1. Let E be a finite locally free OS-module

of constant rank n+ 1. For the structure morphism π : P(E) −→ S,
we have

Rqπ∗(OP(E)(d)) = (omitted)

as sheaves of OS-modules.” ✓
3c / 5



Def. A group I is injective iff for every injective map A ↪→ B,
every map A → I can be extended to a map B → I :

A �
� ∀i //

∀f
��

B

∃fwwI

. . . is Baer iff extensions exist for all ideal inclusions a ↪→ Z.

Def. A group I is divisible iff for every element x ∈ I and
every n ∈ N>0, there is an element y ∈ I such that ny = x.
Examples. Q, Q/Z, Z(p∞).

1 lem+zorn

Every divisible group is injective.

2 There are models of zf without nontrivial injective groups. [Blass]

3 Every group embeds into a divisible group.

Proof. If A ∼= Z⟨M⟩/R, then A ↪→ Q⟨M⟩/R.
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Logical sheaves

The set N is ¬¬-separated in that

∀x, y :N.¬¬(x = y) ⇒ x = y,
“continuous N-valued functions which
agree on a dense open agree everywhere”

but not a ¬¬-sheaf, which would mean

∀S ⊆ N.¬¬(S singleton) ⇒ ∃!x :N.¬¬(x ∈ S).
“continuous N-valued functions defined on a
dense open can be extended to all of the space”

Sheafify: N+ := {S ⊆ N | ¬¬(S singleton)}/∼ with S ∼ T :⇔ ¬¬(S = T).

1 Prop. The group (Q/Z)+ has the Baer property.

2 Lemma. zorn LetA be a group. Let x0 ∈ A. Then there is an un-
canonicalmap i : A → (Q/Z)+ such that i(x0) = 0 ⇒ ¬¬(x0 = 0).

3 Thm. Every group canonically maps to a Baer group, and with

zorn , this map is injective.
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Perspectives

,
The existence of enough injectives requires only zorn ,

not lem or ac , and is hence constructively neutral.
Assuming zorn on the metalevel,

it also holds for continuous families.

/
Still not fully computational.

Cohomology still requires fixing a universe of sets.

Plan:
Resolve issue by doing without injectives,

inspired by Emily Riehl.
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