The set-theoretic multiverse

The topos-theoretic multiverse

- an invitation -

Connecting **inductive definitions**, **generic models** and a **modal multiverse** for algebra and combinatorics

REDCOM: Reducing complexity in algebra, logic, combinatorics

> Brixen September 19th, 2022

Ingo Blechschmidt University of Augsburg

Def. A set *X* together with a binary relation *R* is **almost-full**_{∞} iff every <u>infinite sequence</u> $\alpha : \mathbb{N} \to X$ is **good** in that there exist numbers *i* < *j* such that $\alpha(i) R \alpha(j)$.

Examples. (\mathbb{N}, \leq) , $X \times Y$ [Dickson], X^* [Higman], Tree(X) [Kruskal] Only classically.

Def. A set *X* together with a binary relation *R* is **almost-full**_{∞} iff every <u>infinite sequence</u> $\alpha : \mathbb{N} \to X$ is **good** in that there exist numbers *i* < *j* such that $\alpha(i) R \alpha(j)$.

Examples. (\mathbb{N}, \leq) , $X \times Y$ [Dickson], X^* [Higman], Tree(X) [Kruskal] Only classically. Constructive reformulation:

Def. For a predicate *P* on finite lists over *X*, inductively define:

$$\frac{P(\sigma)}{P \mid \sigma} \qquad \frac{\forall x \in X. \ P \mid (\sigma :: x)}{P \mid \sigma}$$

"No matter how the finite approximation σ to an infinite sequence will evolve to a better approximation, eventually *P* will hold."

Def. A set *X* together with a binary relation *R* is **almost-full**_{∞} iff every <u>infinite sequence</u> $\alpha : \mathbb{N} \to X$ is **good** in that there exist numbers *i* < *j* such that $\alpha(i) R \alpha(j)$.

Examples. (\mathbb{N}, \leq) , $X \times Y$ [Dickson], X^* [Higman], Tree(X) [Kruskal] Only classically. Constructive reformulation:

Def. For a predicate *P* on finite lists over *X*, inductively define:

$$\frac{P(\sigma)}{P \mid \sigma} \qquad \frac{\forall x \in X. \ P \mid (\sigma :: x)}{P \mid \sigma}$$

"No matter how the finite approximation σ to an infinite sequence will evolve to a better approximation, eventually *P* will hold."

Def. A set *X* together with a binary relation *R* is **almost-full**_{ind} iff Good | [], where Good(σ) $\equiv (\exists i < j. \sigma[i] R \sigma[j])$.

- **1** Constructively, almost-full_{ind} \Rightarrow almost-full_{∞}.
- **2** With **LEM+DC**, almost-full_{ind} \leftarrow almost-full_{∞}.

A transitive relation < on a set X is ...

- well-founded_{∞} iff there is no <u>infinite chain</u> $x_0 > x_1 > \cdots$.
- well-founded'_∞ iff there is no bad set (inhabited and such that for every member there is a smaller member).

A transitive relation < on a set X is ...

well-founded_∞ iff there is no infinite chain x₀ > x₁ > ···.
well-founded'_∞ iff there is no bad set (inhabited and such

that for every member there is a smaller member).

Krull's Lemma: An element x of a ring A is nilpotent if ...

• it is contained in every <u>prime ideal</u>.

A transitive relation < on a set X is ...

well-founded∞ iff there is no infinite chain x₀ > x₁ > ···.
 well-founded'∞ iff there is no bad set (inhabited and such that for every member there is a smaller member).

Krull's Lemma: An element x of a ring A is nilpotent if ...

• it is contained in every <u>prime ideal</u>.

Dependent choice: Let *R* be a binary relation on a set *X* such that $\forall a \in X$. $\exists b \in X$. $a \ R \ b$. Let $x_0 \in X$. Then there is an <u>infinite</u> chain $x_0 \ R \ x_1 \ R \ x_2 \ R \cdots$.

A transitive relation < on a set X is ...

- well-founded_{∞} iff there is no <u>infinite chain</u> $x_0 > x_1 > \cdots$.
- well-founded'_∞ iff there is no bad set (inhabited and such that for every member there is a smaller member).
- well-founded_{ind} iff for every $x \in X$, Acc(x):

$$\frac{\forall y < x. \ \operatorname{Acc}(y)}{\operatorname{Acc}(x)}$$

Krull's Lemma: An element x of a ring A is nilpotent if ...

• it is contained in every <u>prime ideal</u>.

Dependent choice: Let *R* be a binary relation on a set *X* such that $\forall a \in X$. $\exists b \in X$. a R b. Let $x_0 \in X$. Then there is an infinite chain $x_0 R x_1 R x_2 R \cdots$.

A transitive relation < on a set X is ...

- well-founded_{∞} iff there is no <u>infinite chain</u> $x_0 > x_1 > \cdots$.
- well-founded'_∞ iff there is no bad set (inhabited and such that for every member there is a smaller member).
- well-founded_{ind} iff for every $x \in X$, Acc(x):

$$\frac{\forall y < x. \ \mathsf{Acc}(y)}{\mathsf{Acc}(x)}$$

Krull's Lemma: An element x of a ring A is nilpotent if ...

- it is contained in every <u>prime ideal</u>.
- the theory of prime ideals of *A* proves " $x \in \mathfrak{p}$ ".

Dependent choice: Let *R* be a binary relation on a set *X* such that $\forall a \in X$. $\exists b \in X$. a R b. Let $x_0 \in X$. Then there is an infinite chain $x_0 R x_1 R x_2 R \cdots$.

The set-theoretic multiverse

Def. A model of set theory is a (perhaps class-sized) structure (M, \in) satisfying axioms such as those of zFc.

Examples.

- *V*, the class of all sets
- L, Gödel's constructible universe
- V[G], a forcing extension containing a generic filter G of some poset of forcing conditions
- Henkin/term models from consistency of (extensions of) zFC

The set-theoretic multiverse

Def. A model of set theory is a (perhaps class-sized) structure (M, \in) satisfying axioms such as those of zFC.

Examples.

- *V*, the class of all sets
- L, Gödel's constructible universe
- V[G], a forcing extension containing a generic filter G of some poset of forcing conditions
- Henkin/term models from consistency of (extensions of) zFC

Def. $\Diamond \varphi$ iff φ holds in **some extension** of the current universe. $\Box \varphi$ iff φ holds in **all extensions** of the current universe.

□(◇ CH ∧ ◇ ¬CH), the continuum hypothesis is a switch
 □ ◇ □(X is countable), existence of an enumeration is a button

Toposes and generic models

■ A (Grothendieck) topos is a category of sheaves over some site. *Examples.* Set, Sh(X), Set[T].

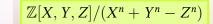
Toposes and generic models

- A (Grothendieck) topos is a category of sheaves over some site. *Examples.* Set, Sh(X), Set[T].
- 2 The Kripke–Joyal semantics defines what it means for a statement φ to hold "internally in a topos \mathcal{E} ", written " $\mathcal{E} \models \varphi$ ". This semantics is sound with respect to intuitionistic logic.

Toposes and generic models

- A (Grothendieck) topos is a category of sheaves over some site. *Examples.* Set, Sh(X), $Set[\mathbb{T}]$.
- 2 The Kripke–Joyal semantics defines what it means for a statement φ to hold "internally in a topos \mathcal{E} ", written " $\mathcal{E} \models \varphi$ ". This semantics is sound with respect to intuitionistic logic.
- **3** Let \mathbb{T} be a geometric theory. The **classifying topos** Set[\mathbb{T}] contains the generic \mathbb{T} -model $U_{\mathbb{T}}$. It is conservative in that for geometric implications φ , the following are equivalent:
 - **1** The statement φ holds for $U_{\mathbb{T}}$ in Set[\mathbb{T}].
 - The statement φ holds for every \mathbb{T} -model in every topos.
 - The statement φ is provable modulo \mathbb{T} .

 \mathbb{Z}



 \mathcal{O}_X

- **Def.** A statement φ holds . . .
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\otimes \varphi$) iff it holds in some positive ouvert topos.

- **Def.** A statement φ holds ...
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\otimes \varphi$) iff it holds in some positive ouvert topos.
- A relation is almost-full_{ind} iff every infinite sequence everywhere is good iff the generic infinite sequence is good iff the theory of infinite sequences proves goodness.

- **Def.** A statement φ holds ...
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\otimes \varphi$) iff it holds in some positive ouvert topos.
- A relation is almost-full_{ind} iff every infinite sequence everywhere is good iff the generic infinite sequence is good iff the theory of infinite sequences proves goodness.
- 2 A relation is well-founded_{ind}
 iff *everywhere* there are no infinite descending chains iff the *generic infinite descending chain* validates ⊥
 iff the *theory of infinite descending chains* proves ⊥.

- **Def.** A statement φ holds ...
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\otimes \varphi$) iff it holds in some positive ouvert topos.
- A relation is almost-full_{ind} iff every infinite sequence everywhere is good iff the generic infinite sequence is good iff the theory of infinite sequences proves goodness.
- 2 A relation is well-founded_{ind} iff *everywhere* there are no bad sets iff the *generic bad set* validates ⊥ iff the *theory of bad sets* proves ⊥.

- **Def.** A statement φ holds . . .
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\otimes \varphi$) iff it holds in some positive ouvert topos.
- A relation is almost-full_{ind} iff every infinite sequence *everywhere* is good.
 A relation is well-founded_{ind} iff *nowhere* there are bad sets.

- **Def.** A statement φ holds ...
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\bigotimes \varphi$) iff it holds in some positive ouvert topos.
- A relation is almost-full_{ind} iff every infinite sequence *everywhere* is good.
- **2** A relation is well-founded_{ind} iff *nowhere* there are bad sets.
- 3 A ring element x is nilpotent
 iff *everywhere* it is contained in all prime ideals
 iff it is contained in the *generic prime ideal*iff the *theory of prime ideals* proves "x ∈ p".

- **Def.** A statement φ holds ...
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\otimes \varphi$) iff it holds in some positive ouvert topos.
- A relation is almost-full_{ind} iff every infinite sequence *everywhere* is good.
- **2** A relation is well-founded_{ind} iff *nowhere* there are bad sets.
- 3 A ring element is nilpotent iff all prime ideals *everywhere* contain it.

- **Def.** A statement φ holds ...
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\otimes \varphi$) iff it holds in some positive ouvert topos.
- A relation is almost-full_{ind} iff every infinite sequence *everywhere* is good.
- **2** A relation is well-founded_{ind} iff *nowhere* there are bad sets.
- 3 A ring element is nilpotent iff all prime ideals *everywhere* contain it.
- **4** Given an inhabited set *X*, *proximally* there is a surjection $\mathbb{N} \twoheadrightarrow X$ [J–T].
 - **NB:** $(\diamondsuit \varphi) \Rightarrow \varphi$, if φ is a geometric implication.
 - $(\otimes\,\varphi)\Rightarrow\varphi,$ if φ is first-order.
 - $\varphi \Rightarrow (\Box \varphi), \text{ if } \varphi \text{ is a geometric formula.}$

- **Def.** A statement φ holds ...
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\otimes \varphi$) iff it holds in some positive ouvert topos.
- A relation is almost-full_{ind} iff every infinite sequence *everywhere* is good.
- **2** A relation is well-founded_{ind} iff *nowhere* there are bad sets.
- 3 A ring element is nilpotent iff all prime ideals *everywhere* contain it.
- Given an inhabited set X, *proximally* there is a surjection $\mathbb{N} \twoheadrightarrow X$ [J–T].
 - **NB:** $(\diamondsuit \varphi) \Rightarrow \varphi$, if φ is a geometric implication.
 - $(\otimes\,\varphi)\Rightarrow\varphi,$ if φ is first-order.
 - $\varphi \Rightarrow (\Box \, \varphi), \text{ if } \varphi \text{ is a geometric formula}.$
- **5** Given (X, R, x_0) as in DC, *proximally* there is an infinite chain.

- **Def.** A statement φ holds ...
 - **everywhere** $(\Box \varphi)$ iff it holds in every (Grothendieck) topos (over the current base topos).
 - **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
 - **3** proximally ($\otimes \varphi$) iff it holds in some positive ouvert topos.
- A relation is almost-full_{ind} iff every infinite sequence *everywhere* is good.
- **2** A relation is well-founded_{ind} iff *nowhere* there are bad sets.
- 3 A ring element is nilpotent iff all prime ideals *everywhere* contain it.
- Given an inhabited set *X*, *proximally* there is a surjection $\mathbb{N} \twoheadrightarrow X$ [J–T].
 - **NB:** $(\diamondsuit \varphi) \Rightarrow \varphi$, if φ is a geometric implication.

 $(\otimes \, \varphi) \Rightarrow \varphi,$ if φ is first-order.

- $\varphi \Rightarrow (\Box \, \varphi), \text{ if } \varphi \text{ is a geometric formula.}$
- **5** Given (X, R, x_0) as in DC, *proximally* there is an infinite chain.
- 6 Somewhere, the law of excluded middle holds. [Barr]

Prop. Let (\leq) be a transitive almost-full_{ind} relation. Then (<), where $x < y \equiv (x \leq y \land \neg(y \leq x))$, is well-founded_{ind}.

Proof. Everywhere, there can be no infinite descending chain, as any such would also be good. $\hfill \Box$

Unrolling this proof gives a program $(\text{Good} | []) \rightarrow \prod_{x:X} \text{Acc}(x)$.

```
data Acc {A : Set} (R : A \rightarrow A \rightarrow Set) : A \rightarrow Set where

acc : {X : A} \rightarrow ((y : A) \rightarrow R y x \rightarrow Acc R y) \rightarrow Acc R x

data |_{-} {A : Set} (P : List A \rightarrow Set) : List A \rightarrow Set where

here : {\sigma : List A} \rightarrow P\sigma \rightarrow P\sigma

later : {\sigma : List A} \rightarrow (x : A) \rightarrow P| (x :: \sigma)) \rightarrow P| \sigma

module _ (A : Set) (\leq : A \rightarrow A \rightarrow Set) (\leq-trans : Transitive \leq) where

Good : List A \rightarrow Set

Good \sigma = \Sigma[ i \in Fin (length \sigma) ] \Sigma[ j \in Fin (length \sigma) ]

(i Data.Fin.< j) \times (lookup \sigma j \leq lookup \sigma i)

\leq \Sigma : A \rightarrow A \rightarrow Set

x \leq y = (x \leq y) \times \neg (y \leq x)

lemma-no-good-descending-sequences : (\sigma : List A) \rightarrow Good \sigma \rightarrow Linked \leq \Sigma : \sigma \rightarrow \bot

lemma-no-good-descending-sequences \sigma \neq q = \{ \geq 0

Theorem : Good \mid [] \rightarrow (x : A) \rightarrow Acc \leq \propto x
```

Thm. [Dickson] If *X* and *Y* are almost-full_{ind}, so is $X \times Y$.

Thm. [Dickson] If *X* and *Y* are almost-full_{ind}, so is $X \times Y$.

- Proof.
 - It suffices to verify that the generic infinite sequence $\gamma = (\alpha, \beta)$: $\mathbb{N} \to X \times Y$ is good.

Thm. [Dickson] If *X* and *Y* are almost-full_{ind}, so is $X \times Y$.

Proof.

 It suffices to verify that the generic infinite sequence γ = (α, β) : N → X × Y is good. Since being good can be put as a geometric implication (in fact, a geometric formula) and since LEM holds somewhere, we may assume LEM.

Thm. [Dickson] If *X* and *Y* are almost-full_{ind}, so is $X \times Y$.

- It suffices to verify that the generic infinite sequence γ = (α, β) : N → X × Y is good. Since being good can be put as a geometric implication (in fact, a geometric formula) and since LEM holds somewhere, we may assume LEM.
- **2** By LEM and well-foundedness, there is a minimal value $\alpha(i_0)$ among all values of α .

Thm. [Dickson] If *X* and *Y* are almost-full_{ind}, so is $X \times Y$.

- It suffices to verify that the generic infinite sequence γ = (α, β) : N → X × Y is good. Since being good can be put as a geometric implication (in fact, a geometric formula) and since LEM holds somewhere, we may assume LEM.
- **2** By LEM and well-foundedness, there is a minimal value $\alpha(i_0)$ among all values of α . Similarly, there is a minimal value $\alpha(i_1)$ among $(\alpha(n))_{n>i_0}$,

Thm. [Dickson] If *X* and *Y* are almost-full_{ind}, so is $X \times Y$.

- It suffices to verify that the generic infinite sequence γ = (α, β) : N → X × Y is good. Since being good can be put as a geometric implication (in fact, a geometric formula) and since LEM holds somewhere, we may assume LEM.
- **2** By LEM and well-foundedness, there is a minimal value $\alpha(i_0)$ among all values of α . Similarly, there is a minimal value $\alpha(i_1)$ among $(\alpha(n))_{n>i_0}$, a minimal value $\alpha(i_2)$ among $(\alpha(n))_{n>i_1}$, and so on.

Thm. [Dickson] If *X* and *Y* are almost-full_{ind}, so is $X \times Y$.

- It suffices to verify that the generic infinite sequence γ = (α, β) : N → X × Y is good. Since being good can be put as a geometric implication (in fact, a geometric formula) and since LEM holds somewhere, we may assume LEM.
- **2** By LEM and well-foundedness, there is a minimal value $\alpha(i_0)$ among all values of α . Similarly, there is a minimal value $\alpha(i_1)$ among $(\alpha(n))_{n>i_0}$, a minimal value $\alpha(i_2)$ among $(\alpha(n))_{n>i_1}$, and so on. By *proximal dependent choice*, we can proximally collect these indices into a function $i : \mathbb{N} \to \mathbb{N}$; this switches LEM off.

Thm. [Dickson] If *X* and *Y* are almost-full_{ind}, so is $X \times Y$.

- It suffices to verify that the generic infinite sequence γ = (α, β) : N → X × Y is good. Since being good can be put as a geometric implication (in fact, a geometric formula) and since LEM holds somewhere, we may assume LEM.
- **2** By LEM and well-foundedness, there is a minimal value $\alpha(i_0)$ among all values of α . Similarly, there is a minimal value $\alpha(i_1)$ among $(\alpha(n))_{n>i_0}$, a minimal value $\alpha(i_2)$ among $(\alpha(n))_{n>i_1}$, and so on. By *proximal dependent choice*, we can proximally collect these indices into a function $i : \mathbb{N} \to \mathbb{N}$; this switches LEM off.
- **3** Switching LEM on again, there is a minimal value $\beta(i(k_0))$ among all values of $\beta \circ i$.

6

Extracting constructive content

Thm. [Dickson] If *X* and *Y* are almost-full_{ind}, so is $X \times Y$.

- It suffices to verify that the generic infinite sequence γ = (α, β) : N → X × Y is good. Since being good can be put as a geometric implication (in fact, a geometric formula) and since LEM holds somewhere, we may assume LEM.
- **2** By LEM and well-foundedness, there is a minimal value $\alpha(i_0)$ among all values of α . Similarly, there is a minimal value $\alpha(i_1)$ among $(\alpha(n))_{n>i_0}$, a minimal value $\alpha(i_2)$ among $(\alpha(n))_{n>i_1}$, and so on. By *proximal dependent choice*, we can proximally collect these indices into a function $i : \mathbb{N} \to \mathbb{N}$; this switches LEM off.
- **3** Switching LEM on again, there is a minimal value $\beta(i(k_0))$ among all values of $\beta \circ i$. Hence γ is good in view of

$$\alpha(i(k_0)) \leq \alpha(i(k_0+1)), \qquad \beta(i(k_0)) \leq \beta(i(k_0+1)).$$

I learned the idea to study a modal multiverse of toposes from **Alexander Oldenziel**, circa 2016. Foreshadowing results:

- 1984 André Joyal, Miles Tierney. An extension of the Galois theory of Grothendieck.
- 1987 Andreas Blass. Well-ordering and induction in intuitionistic logic and topoi.
- 2013 Shawn Henry. Classifying topoi and preservation of higher order logic by geometric morphisms.

Work by Milly Maietti and Steve Vickers on *arithmetic universes* is also closely connected. In progress:

- Develop details and formalize.
- Determine the precise list of valid modal principles.
- Carry out case studies with program extraction.
- Incorporate the right adjoints of geometric morphisms.