
– an invitation –

Extraction of programs from proofs

Autumn school on
Proof and Computation

in Fischbachau

September 26th to October 1st, 2022

Ingo Blechschmidt
University of Augsburg

0 / 15

– an invitation –

Extraction of programs from proofs

Autumn school on
Proof and Computation

in Fischbachau

September 26th to October 1st, 2022

Ingo Blechschmidt
University of Augsburg

20
22
-1
0-
04

Extraction of programs from proofs

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

1 / 15

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

20
22
-1
0-
04

Extraction of programs from proofs

From the displayed proof of Euclid’s theorem, we can read off an algorithm for
computing arbitrarily large primes. There is a deeper reason to that: The proof
is constructive, and from every constructive proof we can extract a corresponding
program. One way to formally state and prove this meta-statement is by realizability
theory, the subject of the first lecture.

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

1 / 15

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

20
22
-1
0-
04

Extraction of programs from proofs

From the displayed proof of Euclid’s theorem, we can read off an algorithm for
computing arbitrarily large primes. There is a deeper reason to that: The proof
is constructive, and from every constructive proof we can extract a corresponding
program. One way to formally state and prove this meta-statement is by realizability
theory, the subject of the first lecture.

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

1 / 15

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

20
22
-1
0-
04

Extraction of programs from proofs

From the displayed proof of Euclid’s theorem, we can read off an algorithm for
computing arbitrarily large primes. There is a deeper reason to that: The proof
is constructive, and from every constructive proof we can extract a corresponding
program. One way to formally state and prove this meta-statement is by realizability
theory, the subject of the first lecture.

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

1 / 15

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

20
22
-1
0-
04

Extraction of programs from proofs

From the displayed proof of Euclid’s theorem, we can read off an algorithm for
computing arbitrarily large primes. There is a deeper reason to that: The proof
is constructive, and from every constructive proof we can extract a corresponding
program. One way to formally state and prove this meta-statement is by realizability
theory, the subject of the first lecture.

In addition to the displayed applications of realizability theory, personally I’m in-
trigued by it for mostly the following reasons: (1) Realizability elucidates the interplay
between constructive and computable mathematics. (2) Realizability is a useful guide
for pursuing the question whether two given proofs are “secretly the same”: Do they
have the same computational content? (3) Realizability theory provides us with a
host of tantalizing anti-classical models of constructive mathematics.

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

1 / 15

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

20
22
-1
0-
04

Extraction of programs from proofs

From the displayed proof of Euclid’s theorem, we can read off an algorithm for
computing arbitrarily large primes. There is a deeper reason to that: The proof
is constructive, and from every constructive proof we can extract a corresponding
program. One way to formally state and prove this meta-statement is by realizability
theory, the subject of the first lecture.

In addition to the displayed applications of realizability theory, personally I’m in-
trigued by it for mostly the following reasons: (1) Realizability elucidates the interplay
between constructive and computable mathematics. (2) Realizability is a useful guide
for pursuing the question whether two given proofs are “secretly the same”: Do they
have the same computational content? (3) Realizability theory provides us with a
host of tantalizing anti-classical models of constructive mathematics.

In the second lecture, we will turn to extracting programs from classical proofs. We
will do so by transforming classical proofs into constructive ones and then applying
the tools of the first lecture. Amazingly, the displayed classical proof and others like
it do have constructive content—even though it is constructively and computably
impossible to determine minimal values of infinite sequences.

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

1 / 15

Thm. For every number n ∈ N, there is a prime larger than n.

Proof. Any prime factor of n! + 1 will do.

“Every constructive theorem has a computable witness.”

HA ⊢ φ =⇒ ∃e. e ⊩ φ
constructive proof 7−→ realizer

Integrated developments
SAT checking, . . .

Computability theory
induction =̂ recursion, . . .

Metatheory of constructive systems
provability results, . . .

Philosophy of proof and computation
realizability in the real world, . . .

Thm. Every infinite sequence α : N → N is good in that there are
numbers i < j such that α(i) ≤ α(j).

Proof. By lem , there is a minimal value α(i). Set j := i + 1.

“Every theorem has a computable* witness.”
* with monadic side effects

20
22
-1
0-
04

Extraction of programs from proofs

Finally, in the third lecture we will learn how to extract constructive content from
certain kinds of invalid proofs—those which use the preposterous assumption that
every set is countable.

The methods presented in the second and in the third lecture are deeply related to
the dynamical approach to algebra reported on in Stefan Neuwirth’s course. Coherent
(and geometric) logic as in Marc Bezem’s course also plays an important role in this
toolbox. It is greatly informed by a categorical analysis as provided in Steve Awodey’s
course, particularly so for the third lecture. The first and the second lecture overlap
with Chuangjie Xu’s course, particularly regarding the double-negation translation.

This course is set in an informal constructive metatheory. Formalization would both
be possible in type theory as in Fredrik Nordvall-Forsberg’s course or in constructive
set theory as in Hajime Ishihare’s course. All appeals to the transfinite such as by the
law of excluded middle or by the axiom of choice will be explicitly pointed out. For
primers to constructive mathematics, enjoy Andrej Bauer’s 2013 IAS talkAndrej Bauer’s 2013 IAS talk, its written versionwritten
version or these course notesthese course notes.

https://video.ias.edu/members/1213/0318-AndrejBauer
https://video.ias.edu/members/1213/0318-AndrejBauer

Ada Lovelace,
the world’s first
computer programmer
* 1815 † 1852

Ada Lovelace,
the world’s first
computer programmer
* 1815 † 1852

20
22
-1
0-
04

Extraction of programs from proofs

This year we will celebrate the 207th birthday of Ada Lovelace, pioneer in computing.

It is astonishing what she started and what long way we have come!

Perhaps you would enjoy the graphic novel The Thrilling Adventures of Lovelace and
Babbage in her honor.

Lecture I:
Realizability theory

for extracting programs from constructive proofs

2 / 15

Lecture I:
Realizability theory

for extracting programs from constructive proofs

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Monika Seisenberger has many and more detailedmany and more detailed slides on this topic.

For a written primer to realizability theory, see Andrej Bauer’s course notesAndrej Bauer’s course notes and the
notes by Thomas StreicherThomas Streicher.

https://www.proofsociety.org/wp-content/uploads/2018/09/ProgramExtraction_slides.pdf
https://www.proofsociety.org/wp-content/uploads/2018/09/ProgramExtraction_slides.pdf
http://math.andrej.com/asset/data/c2c.pdf
http://math.andrej.com/asset/data/c2c.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf

Heyting arithmetic

The language of arithmetic has

as its single sort: N
as function symbols: 0, S, +, ·
as its single relation symbol: =

Heyting arithmetic has as axioms (the universal closure of)

¬(0 = Sx)

S(x) = S(y) ⇒ x = y

x + 0 = x x · 0 = 0
x + S(y) = S(x + y) x · S(y) = (x · y) + x

together with the induction scheme (one axiom for each formula φ)

φ(0) ∧
(
∀x :N . φ(x) ⇒ φ(S(x))

)
=⇒ ∀x :N . φ(x)

and the rules of sequence calculus.
3 / 15

Heyting arithmetic

The language of arithmetic has

as its single sort: N
as function symbols: 0, S, +, ·
as its single relation symbol: =

Heyting arithmetic has as axioms (the universal closure of)

¬(0 = Sx)

S(x) = S(y) ⇒ x = y

x + 0 = x x · 0 = 0
x + S(y) = S(x + y) x · S(y) = (x · y) + x

together with the induction scheme (one axiom for each formula φ)

φ(0) ∧
(
∀x :N . φ(x) ⇒ φ(S(x))

)
=⇒ ∀x :N . φ(x)

and the rules of sequence calculus.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Heyting arithmetic

Heyting arithmetic is a convenient base theory for a constructive analysis of arithmetic.
It has exactly the same axioms as Peano arithmetic, only that HA is set in intuitionistic
logic while PA adds the law of excluded middle.

As is common, we define negation “¬φ” as a shorthand for the implication “φ⇒ ⊥”.

HA is often expanded to HAω , higher-order Heyting arithmetic, which includes sorts,
term constructors and appropriate rules for function types such as NN and N (NN).

In its original form, realizability theory is only concernced with extracting compu-
tational witnesses from HA-proofs; however it is fruitfully extended to all of HAω ,
and we will also glimpse into this higher-order extension. (NB: HAω is conservative
over HA, and one way to show this is by realizability.)

Sequence calculus

φ ⊢⃗x φ
φ ⊢⃗x ψ

φ[⃗s/x⃗] ⊢⃗y ψ[⃗s/x⃗]
φ ⊢⃗x ψ ψ ⊢⃗x χ

φ ⊢⃗x χ

φ ⊢⃗x ⊤ φ ∧ ψ ⊢⃗x φ φ ∧ ψ ⊢⃗x ψ
φ ⊢⃗x ψ φ ⊢⃗x χ

φ ⊢⃗x ψ ∧ χ

⊥ ⊢⃗x φ φ ⊢⃗x φ ∨ ψ ψ ⊢⃗x φ ∨ ψ
φ ⊢⃗x χ ψ ⊢⃗x χ

φ ∨ ψ ⊢⃗x χ

φ ∧ ψ ⊢⃗x χ
φ ⊢⃗x ψ ⇒ χ

φ ⊢⃗x,y ψ
∃y : Y . φ ⊢⃗x ψ

(y not occurring in ψ)
φ ⊢⃗x,y ψ
φ ⊢⃗x ∀y : Y . ψ

(y not occurring in φ)

⊤ ⊢x x = x (⃗x = y⃗) ∧ φ ⊢⃗z φ[⃗y/x⃗]
(“⃗x = y⃗ ” is short for “x1 = y1 ∧ · · · ∧ xn = yn”.)

4 / 15

Sequence calculus

φ ⊢⃗x φ
φ ⊢⃗x ψ

φ[⃗s/x⃗] ⊢⃗y ψ[⃗s/x⃗]
φ ⊢⃗x ψ ψ ⊢⃗x χ

φ ⊢⃗x χ

φ ⊢⃗x ⊤ φ ∧ ψ ⊢⃗x φ φ ∧ ψ ⊢⃗x ψ
φ ⊢⃗x ψ φ ⊢⃗x χ

φ ⊢⃗x ψ ∧ χ

⊥ ⊢⃗x φ φ ⊢⃗x φ ∨ ψ ψ ⊢⃗x φ ∨ ψ
φ ⊢⃗x χ ψ ⊢⃗x χ

φ ∨ ψ ⊢⃗x χ

φ ∧ ψ ⊢⃗x χ
φ ⊢⃗x ψ ⇒ χ

φ ⊢⃗x,y ψ
∃y : Y . φ ⊢⃗x ψ

(y not occurring in ψ)
φ ⊢⃗x,y ψ
φ ⊢⃗x ∀y : Y . ψ

(y not occurring in φ)

⊤ ⊢x x = x (⃗x = y⃗) ∧ φ ⊢⃗z φ[⃗y/x⃗]
(“⃗x = y⃗ ” is short for “x1 = y1 ∧ · · · ∧ xn = yn”.)

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Sequence calculus

Number realizability

e ⊩ s = t iff s = t.
e ⊩ ⊤ iff true.
e ⊩ ⊥ iff false.
e ⊩ (φ ∧ ψ) iff π1 · e ↓ and π2 · e ↓ and π1 · e ⊩ φ and π2 · e ⊩ ψ.
e ⊩ (φ ∨ ψ) iff π1 · e ↓ and π2 · e ↓ and

if π1 · e = 0 then π2 · e ⊩ φ, and
if π1 · e ̸= 0 then π2 · e ⊩ ψ.

e ⊩ (φ⇒ ψ) iff for every r ∈ N such that r ⊩ φ, e · r ↓ and e · r ⊩ ψ.
e ⊩ (∀n :N . φ(n)) iff for every n0 ∈ N, e · n0 ↓ and e · n0 ⊩ φ(n0).
e ⊩ (∃n :N . φ(n)) iff π1 · e ↓ and π2 · e ↓ and π2 · e ⊩ φ(π1 · e).
e ⊩ (∀f :NN . φ(f)) iff for every f0 : N → N and every r0 ∈ N such that

f0 is computed by the r0-th machine,
e · r0 ↓ and e · r0 ⊩ φ(f0).

e ⊩ (∃f :NN . φ(f)) iff π1 · e ↓ and π2 · e ↓ and the (π1 · e)-th machine
computes a function f0 : N → N and π2 · e ⊩ φ(f0).

Thm. If HA ⊢ φ, then there is a number e ∈ N such that e ⊩ φ.
5 / 15

Number realizability

e ⊩ s = t iff s = t.
e ⊩ ⊤ iff true.
e ⊩ ⊥ iff false.
e ⊩ (φ ∧ ψ) iff π1 · e ↓ and π2 · e ↓ and π1 · e ⊩ φ and π2 · e ⊩ ψ.
e ⊩ (φ ∨ ψ) iff π1 · e ↓ and π2 · e ↓ and

if π1 · e = 0 then π2 · e ⊩ φ, and
if π1 · e ̸= 0 then π2 · e ⊩ ψ.

e ⊩ (φ⇒ ψ) iff for every r ∈ N such that r ⊩ φ, e · r ↓ and e · r ⊩ ψ.
e ⊩ (∀n :N . φ(n)) iff for every n0 ∈ N, e · n0 ↓ and e · n0 ⊩ φ(n0).
e ⊩ (∃n :N . φ(n)) iff π1 · e ↓ and π2 · e ↓ and π2 · e ⊩ φ(π1 · e).
e ⊩ (∀f :NN . φ(f)) iff for every f0 : N → N and every r0 ∈ N such that

f0 is computed by the r0-th machine,
e · r0 ↓ and e · r0 ⊩ φ(f0).

e ⊩ (∃f :NN . φ(f)) iff π1 · e ↓ and π2 · e ↓ and the (π1 · e)-th machine
computes a function f0 : N → N and π2 · e ⊩ φ(f0).

Thm. If HA ⊢ φ, then there is a number e ∈ N such that e ⊩ φ.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Number realizability

A statement φ is realizable, written “⊩ φ”, iff it has a realizer, a number e ∈ N such
that e ⊩ φ. The recursive rules governing which numbers e are deemed to be a
realizer of φ make use of Kleene’s original partial combinatory algebra, the natural
numbers equipped with the following partial binary operation (·): e · n is the result
of applying the input n to the e-th Turing machine (in some effective enumeration of
all Turing machines). We write “e · n ↓” to signify that this computation terminates.

Instead of Turing machines, we can also study other deterministic models of com-
putation by using different partial combinatory algebras, or even nondeterministic
and stateful models by a recent tantalizing generalizationtantalizing generalization due to Liron Cohen and her
coauthors Sofia Abreu Faro and Ross Tate.

Realizability theory provides one way of formalizing the informal Brouwer–Heyting–
Kolmogorov interpretation of constructive mathematics. For instance, that interpreta-
tion states that a witness of an implication φ ⇒ ψ is a “method” for transforming
witnesses for φ into witnesses for ψ. Realizability spells out what “method” should
mean: Turing machine.

https://rosstate.org/publications/effectful/effectful-mfps19.pdf
https://rosstate.org/publications/effectful/effectful-mfps19.pdf

Number realizability

e ⊩ s = t iff s = t.
e ⊩ ⊤ iff true.
e ⊩ ⊥ iff false.
e ⊩ (φ ∧ ψ) iff π1 · e ↓ and π2 · e ↓ and π1 · e ⊩ φ and π2 · e ⊩ ψ.
e ⊩ (φ ∨ ψ) iff π1 · e ↓ and π2 · e ↓ and

if π1 · e = 0 then π2 · e ⊩ φ, and
if π1 · e ̸= 0 then π2 · e ⊩ ψ.

e ⊩ (φ⇒ ψ) iff for every r ∈ N such that r ⊩ φ, e · r ↓ and e · r ⊩ ψ.
e ⊩ (∀n :N . φ(n)) iff for every n0 ∈ N, e · n0 ↓ and e · n0 ⊩ φ(n0).
e ⊩ (∃n :N . φ(n)) iff π1 · e ↓ and π2 · e ↓ and π2 · e ⊩ φ(π1 · e).
e ⊩ (∀f :NN . φ(f)) iff for every f0 : N → N and every r0 ∈ N such that

f0 is computed by the r0-th machine,
e · r0 ↓ and e · r0 ⊩ φ(f0).

e ⊩ (∃f :NN . φ(f)) iff π1 · e ↓ and π2 · e ↓ and the (π1 · e)-th machine
computes a function f0 : N → N and π2 · e ⊩ φ(f0).

Thm. If HA ⊢ φ, then there is a number e ∈ N such that e ⊩ φ.
5 / 15

Number realizability

e ⊩ s = t iff s = t.
e ⊩ ⊤ iff true.
e ⊩ ⊥ iff false.
e ⊩ (φ ∧ ψ) iff π1 · e ↓ and π2 · e ↓ and π1 · e ⊩ φ and π2 · e ⊩ ψ.
e ⊩ (φ ∨ ψ) iff π1 · e ↓ and π2 · e ↓ and

if π1 · e = 0 then π2 · e ⊩ φ, and
if π1 · e ̸= 0 then π2 · e ⊩ ψ.

e ⊩ (φ⇒ ψ) iff for every r ∈ N such that r ⊩ φ, e · r ↓ and e · r ⊩ ψ.
e ⊩ (∀n :N . φ(n)) iff for every n0 ∈ N, e · n0 ↓ and e · n0 ⊩ φ(n0).
e ⊩ (∃n :N . φ(n)) iff π1 · e ↓ and π2 · e ↓ and π2 · e ⊩ φ(π1 · e).
e ⊩ (∀f :NN . φ(f)) iff for every f0 : N → N and every r0 ∈ N such that

f0 is computed by the r0-th machine,
e · r0 ↓ and e · r0 ⊩ φ(f0).

e ⊩ (∃f :NN . φ(f)) iff π1 · e ↓ and π2 · e ↓ and the (π1 · e)-th machine
computes a function f0 : N → N and π2 · e ⊩ φ(f0).

Thm. If HA ⊢ φ, then there is a number e ∈ N such that e ⊩ φ.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Number realizability

The clauses for disjunction and existential quantification require pairing and unpairing.
Given two numbers a and b, there is a Turing machine pa,b which outputs a or b
depending on whether its input is zero or not zero. By π1 and π2, we mean (indices of)
Turing machines which, when called on input (an index of) pa,b, extract a repectively b
by simulating its input on the input 0 or 1.

The soundness theorem is proven by an instructive induction on the structure of HA-
proofs, verifying that if HA proves a sequent φ ⊢⃗x ψ, then there is a realizer
for ∀x1. . . . ∀xn. (φ ⇒ ψ). The core idea of the proof is to verify that every ax-
iom and every rule of HA is realized. In this way, computational content of every
axiom and every rule is explicated.

For instance, the statement (with no free variables)

⊥ ⇒ φ

is realized by any number e ∈ N such that for every r ∈ N with r ⊩ φ (this condition
is never satisfied), e · r ↓ and e · r ⊩ φ, so by any number whatsoever.

Number realizability

e ⊩ s = t iff s = t.
e ⊩ ⊤ iff true.
e ⊩ ⊥ iff false.
e ⊩ (φ ∧ ψ) iff π1 · e ↓ and π2 · e ↓ and π1 · e ⊩ φ and π2 · e ⊩ ψ.
e ⊩ (φ ∨ ψ) iff π1 · e ↓ and π2 · e ↓ and

if π1 · e = 0 then π2 · e ⊩ φ, and
if π1 · e ̸= 0 then π2 · e ⊩ ψ.

e ⊩ (φ⇒ ψ) iff for every r ∈ N such that r ⊩ φ, e · r ↓ and e · r ⊩ ψ.
e ⊩ (∀n :N . φ(n)) iff for every n0 ∈ N, e · n0 ↓ and e · n0 ⊩ φ(n0).
e ⊩ (∃n :N . φ(n)) iff π1 · e ↓ and π2 · e ↓ and π2 · e ⊩ φ(π1 · e).
e ⊩ (∀f :NN . φ(f)) iff for every f0 : N → N and every r0 ∈ N such that

f0 is computed by the r0-th machine,
e · r0 ↓ and e · r0 ⊩ φ(f0).

e ⊩ (∃f :NN . φ(f)) iff π1 · e ↓ and π2 · e ↓ and the (π1 · e)-th machine
computes a function f0 : N → N and π2 · e ⊩ φ(f0).

Thm. If HA ⊢ φ, then there is a number e ∈ N such that HA ⊢ (e ⊩ φ).
5 / 15

Number realizability

e ⊩ s = t iff s = t.
e ⊩ ⊤ iff true.
e ⊩ ⊥ iff false.
e ⊩ (φ ∧ ψ) iff π1 · e ↓ and π2 · e ↓ and π1 · e ⊩ φ and π2 · e ⊩ ψ.
e ⊩ (φ ∨ ψ) iff π1 · e ↓ and π2 · e ↓ and

if π1 · e = 0 then π2 · e ⊩ φ, and
if π1 · e ̸= 0 then π2 · e ⊩ ψ.

e ⊩ (φ⇒ ψ) iff for every r ∈ N such that r ⊩ φ, e · r ↓ and e · r ⊩ ψ.
e ⊩ (∀n :N . φ(n)) iff for every n0 ∈ N, e · n0 ↓ and e · n0 ⊩ φ(n0).
e ⊩ (∃n :N . φ(n)) iff π1 · e ↓ and π2 · e ↓ and π2 · e ⊩ φ(π1 · e).
e ⊩ (∀f :NN . φ(f)) iff for every f0 : N → N and every r0 ∈ N such that

f0 is computed by the r0-th machine,
e · r0 ↓ and e · r0 ⊩ φ(f0).

e ⊩ (∃f :NN . φ(f)) iff π1 · e ↓ and π2 · e ↓ and the (π1 · e)-th machine
computes a function f0 : N → N and π2 · e ⊩ φ(f0).

Thm. If HA ⊢ φ, then there is a number e ∈ N such that HA ⊢ (e ⊩ φ).

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Number realizability

In the form “(HA ⊢ φ) ⇒ (⊩ φ)”, the soundness theorem can be stated and proved
in most contexts in which the natural numbers exist as a complete entity, such as
constructive or classical set or type theories.

But in a sense, this is misleading: The mapping from proofs to realizers is a compu-
tationally simple syntactical transformation. As such, already PRA can prove the
soundness theorem if we formulate it as “(HA ⊢ φ) ⇒ (∃e. HA ⊢ (e ⊩ φ))”.

NB: Some formulations of realizability state the clauses for disjunction and existential
quantification in a slighter simpler way, directly using pairing and unpairing functions
on the naturals. The price for this simplification is that then the soundness theorem
has to be formulated as“(HA ⊢ φ) ⇒ (∃e. HA ⊢ (e ⊩ (⊤ ⇒ φ)))”.

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗

(trivially)

5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

There is a machine which determines of any given number whether it
is prime or not.

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗

(trivially)

5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

There is a machine which determines of any given number whether it
is prime or not.20

22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗

(trivially)

5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 1 ” amounts to: There is a machine which determines of any given
number whether it is prime or not.

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗

(trivially)

5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 1 ” amounts to: There is a machine which determines of any given
number whether it is prime or not.20

22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗

(trivially)

5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 2 ” amounts to: There is a machine which, given a number n,
computes a prime larger than n.

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗

(trivially)

5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 2 ” amounts to: There is a machine which, given a number n,
computes a prime larger than n.20

22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗

(trivially)

5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 3 ” amounts to: There is a machine which, given a machine com-
puting a map f : N → N, determines whether f has a zero or not.

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗

(trivially)

5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 3 ” amounts to: There is a machine which, given a machine com-
puting a map f : N → N, determines whether f has a zero or not.20

22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 4 ” amounts to: There is a machine which, given a machine com-
puting a map f : N → N, outputs a machine computing f .

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗

6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 4 ” amounts to: There is a machine which, given a machine com-
puting a map f : N → N, outputs a machine computing f .20

22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

The statement that every function N → N is computable by a Turing machine (or
equivalently, by a lambda term) is known as the formal Church–Turing thesis. It is an
example of a statement which is realizable but not provable in HAω .

Many of the curious properties of the realizability model follow from the formal
Church–Turing thesis. In fact, a slight generalization called the extended Church thesis
suffices to completely characterize the (provably) realizable statements:

HA+ECT ⊢ φ iff HA ⊢ (⊩ φ).

In the realizability model built using lambda terms instead of Turing machines, the for-
mal Church–Turing thesis fails. This is because of changed calling conventions: In the
model built using lambda terms, a realizer for a statement of the form “∀f :NN . φ(f)”
is a lambda term e such that for every lambda term r computing a function f : N → N,
the term er is a realizer forφ(f). However, the term e cannot inspect the form (“source
code”) of its argument.

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

Statement 5 is not a statement in the language of HA or of HAω , but in an extension
in which we can also support quotients (to make sense of the construction of the
reals using equivalence classes of Cauchy sequences) or powersets (to support the
construction using Dedekind cuts). A proper interpretation is possible in the category
of assemblies or in the effective topos.

An exposition of this continuity phenomenon is provided in this survey paperthis survey paper (Exam-
ple 6 there).

https://arxiv.org/pdf/2204.00948.pdf
https://arxiv.org/pdf/2204.00948.pdf

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially) ✓ (if MP)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 6 ” amounts to: There is a machine which, given a machine com-
puting a map f : N → N and given the promise that it is not not the
case that f has a zero, determines a zero of f .

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially) ✓ (if MP)
7 Countable choice holds. ✓

8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 6 ” amounts to: There is a machine which, given a machine com-
puting a map f : N → N and given the promise that it is not not the
case that f has a zero, determines a zero of f .

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

By Markov’s principle, we mean the statement

∀f :NN . (¬¬(∃n :N . f (n) = 0)) ⇒ (∃n :N . f (n) = 0).

By the clauses for implication and negation, a number e is a realizer for a negated
statement ¬ψ iff there is no realizer for ψ:

e ⊩ ¬ψ iff for every r ∈ N such that r ⊩ ψ, e · r ↓ and e · r ⊩ ⊥
iff for every r ∈ N such that r ⊩ ψ, falsum holds
iff there is no number r ∈ N such that r ⊩ ψ

iff ψ is not realized

In particular, if there exists a realizer for a negated statement at all, every number
whatsoever is a realizer. As a consequence, realizers for negated statements are never
informative; and a number e is a realizer for ¬¬φ iff φ is not not realizable. Hence a
realizer for ¬¬φ encodes the mere promise that somewhere, there is a realizer for φ,
without giving any indication how to find it.

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially) ✓ (if MP)
7 Countable choice holds. ✓ ✓ (always!)
8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 7 ” amounts to: There is a machine which, given a machine com-
puting for every x ∈ N some y ∈ A together with a realizer of φ(x, y),
outputs a machine computing a suitable choice function N → A.

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially) ✓ (if MP)
7 Countable choice holds. ✓ ✓ (always!)
8 Heyting arithmetic is categorical. ✗

9 A statement holds iff it is realized. ✗

“⊩ 7 ” amounts to: There is a machine which, given a machine com-
puting for every x ∈ N some y ∈ A together with a realizer of φ(x, y),
outputs a machine computing a suitable choice function N → A.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

By countable choice, we mean the statement

(∀x :N . ∃y :A. φ(x, y)) =⇒ (∃f :AN . ∀x :N . φ(x, f (x))).

Up to some repackaging, this statement is realized by the identity machine which
simply outputs its input unchanged.

Choice for higher type fails in the realizability model. For instance, the statement

(∀f :NN . ∃y :A. φ(f , y)) =⇒ (∃θ :ANN
. ∀f :NN . φ(f , θ(f)))

is not realized. A realizer for the antecedent would be a machine which, given an
index for a Turing machine computing a total function f : N → N, produces a code
for a suitable element y. However, this element y might not only depend on the
extensional input/output behavior of f , but also on the specific index (source code),
hence wouldn’t describe an actual function on the set of computable functionsN → N.

This issue does not arise with countable choice, as natural numbers have unique
codes.

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially) ✓ (if MP)
7 Countable choice holds. ✓ ✓ (always!)
8 Heyting arithmetic is categorical. ✗ ✓ (if MP)
9 A statement holds iff it is realized. ✗

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially) ✓ (if MP)
7 Countable choice holds. ✓ ✓ (always!)
8 Heyting arithmetic is categorical. ✗ ✓ (if MP)
9 A statement holds iff it is realized. ✗

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

Similar to Statement 5, Statement 8 can only be formulated in an extension of the
formal language used here.

It expresses that, up to unique isomorphism, there is just one model of Heyting
arithmetic, namely the standard model. This is in stark contrast with the situation in
classical mathematics, where Gödel’s completeness theorem/Henkin term models can
be used to concoct a host of nonstandard models.

As a consequence, Peano arithmetic is “quasi-inconsistent” from the point of view of
the realizability model, as it is consistent (being equiconsistent with HA) but does
not admit a model (every model of PA is also a model of HA, but HA only has one
model, and this does not validate the PA-theorem “every Turing machine terminates
or does not terminate”).

Pointers to relevant literature are in this survey paperthis survey paper (Example 8 there). Also see the 2022 paper by Marc Hermes and Dominik Kirstthe
2022 paper by Marc Hermes and Dominik Kirst, particularly also the final paragraph
of their Section 8.1 which alludes to a result in a different direction.

https://arxiv.org/pdf/2204.00948.pdf
https://arxiv.org/pdf/2204.00948.pdf
https://www.ps.uni-saarland.de/Publications/documents/HermesKirst_2022_An-Analysis.pdf
https://www.ps.uni-saarland.de/Publications/documents/HermesKirst_2022_An-Analysis.pdf
https://www.ps.uni-saarland.de/Publications/documents/HermesKirst_2022_An-Analysis.pdf

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially) ✓ (if MP)
7 Countable choice holds. ✓ ✓ (always!)
8 Heyting arithmetic is categorical. ✗ ✓ (if MP)
9 A statement holds iff it is realized. ✗ ✓

6 / 15

Exploring the realizability model

statement classical? realizable?

1 Every number is prime or not prime. ✓ (trivially) ✓

2 After every number there is a prime. ✓ ✓

3 Every map N → N has a zero or not. ✓ (trivially) ✗

4 Every map N → N is computable. ✗ ✓ (trivially)
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially) ✓ (if MP)
7 Countable choice holds. ✓ ✓ (always!)
8 Heyting arithmetic is categorical. ✗ ✓ (if MP)
9 A statement holds iff it is realized. ✗ ✓

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Exploring the realizability model

As the examples illustrate, realizability and truth do not at all coincide: There are
many statements which are realizable but not true from the point of view of classical
mathematics (such as the formal Church–Turing thesis) and vice versa (such as the
statement that every function N → N has a zero or not).

Within the realizability model, the situation is radically different. For every state-
ment φ, the statement “φ⇔ (⊩ φ)” is realizable.

The multiverse of models of constructive mathematics can be explored from the point
of view of any base model, and from the point of view of the realizability model it
looks quite different than from the point of view of classical mathematics.

Metatheory of Heyting arithmetic

1 Unprovability results:

There are instances of lem which HA does not prove, such as
“every Turing machine terminates or does not terminate”.

2 Disjunction property:

If HA proves φ ∨ ψ, then HA proves φ or HA proves ψ.

3 Existence property:

If HA proves ∃n :N . φ(n), then there is a number n0 ∈ N such
that HA proves φ(n0).

4 Growth rate:

If HA proves ∀x :N . ∃y :N . φ(x, y), then there exists a higher
primitive recursive function f0 : N → N such that for all x0 ∈ N,
HA proves φ(x0, f0(x0)).

7 / 15

Metatheory of Heyting arithmetic

1 Unprovability results:

There are instances of lem which HA does not prove, such as
“every Turing machine terminates or does not terminate”.

2 Disjunction property:

If HA proves φ ∨ ψ, then HA proves φ or HA proves ψ.

3 Existence property:

If HA proves ∃n :N . φ(n), then there is a number n0 ∈ N such
that HA proves φ(n0).

4 Growth rate:

If HA proves ∀x :N . ∃y :N . φ(x, y), then there exists a higher
primitive recursive function f0 : N → N such that for all x0 ∈ N,
HA proves φ(x0, f0(x0)).

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Metatheory of Heyting arithmetic

Variants of the realizability model can be used to establish several metatheoretic
properties of Heyting arithmetic. For the second and third properties, the keyword is
“realizability with proof”; for the fourth, using the variant of realizability built using
System T terms instead of Turing machines.

Range of machine models

1 Turing machines

“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus

“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines

“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T

Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

8 / 15

Range of machine models

1 Turing machines

“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus

“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines

“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T

Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Range of machine models

Infinite time Turing machines were introduced by Joel David Hamkins and Andy Lewisby Joel David Hamkins and Andy
Lewis. Unlike ordinary Turing machines, they can carry out “more than infinitely
many computational steps”. Where an ordinary Turing machine fails to terminate, an
infinite time Turing machine is put on day ω into a special limit state and can then
meaningfully continue.

All functions in Gödel’s System T are unconditionally total. Hence unbounded search
cannot be implemented in System T.

The idea to apply realizability to machines in the real world is due to Andrej Bauerdue to Andrej Bauer.

https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus

“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines

“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T

Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

8 / 15

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus

“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines

“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T

Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Range of machine models

Infinite time Turing machines were introduced by Joel David Hamkins and Andy Lewisby Joel David Hamkins and Andy
Lewis. Unlike ordinary Turing machines, they can carry out “more than infinitely
many computational steps”. Where an ordinary Turing machine fails to terminate, an
infinite time Turing machine is put on day ω into a special limit state and can then
meaningfully continue.

All functions in Gödel’s System T are unconditionally total. Hence unbounded search
cannot be implemented in System T.

The idea to apply realizability to machines in the real world is due to Andrej Bauerdue to Andrej Bauer.

https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus
“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines

“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T

Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

8 / 15

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus
“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines

“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T

Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Range of machine models

Infinite time Turing machines were introduced by Joel David Hamkins and Andy Lewisby Joel David Hamkins and Andy
Lewis. Unlike ordinary Turing machines, they can carry out “more than infinitely
many computational steps”. Where an ordinary Turing machine fails to terminate, an
infinite time Turing machine is put on day ω into a special limit state and can then
meaningfully continue.

All functions in Gödel’s System T are unconditionally total. Hence unbounded search
cannot be implemented in System T.

The idea to apply realizability to machines in the real world is due to Andrej Bauerdue to Andrej Bauer.

https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus
“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines
“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T

Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

8 / 15

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus
“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines
“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T

Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Range of machine models

Infinite time Turing machines were introduced by Joel David Hamkins and Andy Lewisby Joel David Hamkins and Andy
Lewis. Unlike ordinary Turing machines, they can carry out “more than infinitely
many computational steps”. Where an ordinary Turing machine fails to terminate, an
infinite time Turing machine is put on day ω into a special limit state and can then
meaningfully continue.

All functions in Gödel’s System T are unconditionally total. Hence unbounded search
cannot be implemented in System T.

The idea to apply realizability to machines in the real world is due to Andrej Bauerdue to Andrej Bauer.

https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus
“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines
“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T
Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

8 / 15

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus
“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines
“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T
Markov’s principle is not realized.

5 Machines in the real world – philosophical

“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Range of machine models

Infinite time Turing machines were introduced by Joel David Hamkins and Andy Lewisby Joel David Hamkins and Andy
Lewis. Unlike ordinary Turing machines, they can carry out “more than infinitely
many computational steps”. Where an ordinary Turing machine fails to terminate, an
infinite time Turing machine is put on day ω into a special limit state and can then
meaningfully continue.

All functions in Gödel’s System T are unconditionally total. Hence unbounded search
cannot be implemented in System T.

The idea to apply realizability to machines in the real world is due to Andrej Bauerdue to Andrej Bauer.

https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus
“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines
“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T
Markov’s principle is not realized.

5 Machines in the real world – philosophical
“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

8 / 15

Range of machine models

1 Turing machines
“Every map N → N is computable” is realized by cat.

2 Untyped lambda calculus
“Every map N → N is computable” is not realized.

3 Infinite-time Turing machines
“Every map N → N has a zero or not” is realized by infinite search.

4 Gödel’s System T
Markov’s principle is not realized.

5 Machines in the real world – philosophical
“Every map R → R is continuous” is realized if, in the physical
world, only finitely many computational steps can be carried out
in finite time and if it is possible to form tamper-free private
communication channels.

20
22
-1
0-
04

Extraction of programs from proofs
Realizability theory

Range of machine models

Infinite time Turing machines were introduced by Joel David Hamkins and Andy Lewisby Joel David Hamkins and Andy
Lewis. Unlike ordinary Turing machines, they can carry out “more than infinitely
many computational steps”. Where an ordinary Turing machine fails to terminate, an
infinite time Turing machine is put on day ω into a special limit state and can then
meaningfully continue.

All functions in Gödel’s System T are unconditionally total. Hence unbounded search
cannot be implemented in System T.

The idea to apply realizability to machines in the real world is due to Andrej Bauerdue to Andrej Bauer.

https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
https://arxiv.org/abs/math/9808093
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/
http://math.andrej.com/2014/03/04/intuitionistic-mathematics-and-realizability-in-the-physical-world/

A classical logic fairy tale

Narrator. Once upon a time, in a kingdom far,
far away, the queen of the land and of all Möbius
strips called for her royal philosopher.

Queen. Philosopher! I ask you to carry out the
following order. Get me the Philosopher’s Stone,
or alternatively find out how one could produce
arbitrary amounts of gold with it!

Philosopher. But my queen! I haven’t studied
anything useful! How could I fulfill this order?

Queen. That is not my concern. I’ll see you again
tomorrow. Should you not accomplish the task, I
will take your head off.

Narrator. After a long and wakeful night the
philosopher was called to the queen again.

Queen. Tell me! What do you have to report?

Philosopher. It was not easy and I needed to
follow lots of obscure references, but finally I actu-
ally found out how to use the Philosopher’s Stone

to produce arbitrary amounts of gold. But only I
can conduct this procedure, your royal highness.

Queen. Alright. So be it.

Narrator. And so years passed by, during which
the philosopher imagined herself to be safe. The
queen searched for the stone on her own, but
as long as she hadn’t found it, the philosopher
didn’t need to worry. Yet one day the impossible
happened: The queen has found the stone! And
promptly called for her philosopher.

Queen. Philosopher, look! I have found the
Philosopher’s Stone! Now live up to your
promise! [She hands over the stone.]

Philosopher. Thank you. [She inspects the stone.]
This is indeed the Philosopher’s Stone. Many
years ago you asked me to either acquire the
Philosopher’s Stone or find out how to produce
arbitrary amounts of gold using it. Now it’s my
pleasure to present to you the Philosopher’s Stone.
[She returns the stone.]

A classical logic fairy tale

Narrator. Once upon a time, in a kingdom far,
far away, the queen of the land and of all Möbius
strips called for her royal philosopher.

Queen. Philosopher! I ask you to carry out the
following order. Get me the Philosopher’s Stone,
or alternatively find out how one could produce
arbitrary amounts of gold with it!

Philosopher. But my queen! I haven’t studied
anything useful! How could I fulfill this order?

Queen. That is not my concern. I’ll see you again
tomorrow. Should you not accomplish the task, I
will take your head off.

Narrator. After a long and wakeful night the
philosopher was called to the queen again.

Queen. Tell me! What do you have to report?

Philosopher. It was not easy and I needed to
follow lots of obscure references, but finally I actu-
ally found out how to use the Philosopher’s Stone

to produce arbitrary amounts of gold. But only I
can conduct this procedure, your royal highness.

Queen. Alright. So be it.

Narrator. And so years passed by, during which
the philosopher imagined herself to be safe. The
queen searched for the stone on her own, but
as long as she hadn’t found it, the philosopher
didn’t need to worry. Yet one day the impossible
happened: The queen has found the stone! And
promptly called for her philosopher.

Queen. Philosopher, look! I have found the
Philosopher’s Stone! Now live up to your
promise! [She hands over the stone.]

Philosopher. Thank you. [She inspects the stone.]
This is indeed the Philosopher’s Stone. Many
years ago you asked me to either acquire the
Philosopher’s Stone or find out how to produce
arbitrary amounts of gold using it. Now it’s my
pleasure to present to you the Philosopher’s Stone.
[She returns the stone.]

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A classical logic fairy tale

Adapted from Edward Yang’s blogEdward Yang’s blog.

http://blog.ezyang.com/2013/04/a-classical-logic-fairy-tale/
http://blog.ezyang.com/2013/04/a-classical-logic-fairy-tale/

Lecture II:
Proof transformations

for extracting constructive proofs from classical proofs

9 / 15

Lecture II:
Proof transformations

for extracting constructive proofs from classical proofs

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.

2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

10 / 15

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.

2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A case study in double negation

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.

2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

10 / 15

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.

2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A case study in double negation

The two displayed proofs seem to be devoid of computational content: Computation-
ally, it is neither possible to determine the minimal element of an infinite sequence nor
to determine whether a binary sequence contains infinitely many zeros or infinitely
many ones. These claims have no realizer.

However, contrary to expectations, the two proofs do contain an obscured constructive
core, and this core can be uncovered by the two logical metatheorems presented in this
lecture, the double-negation embedding and Friedman’s trick. Details are in Thierry
Coquand’s Computational Content of Classical LogicComputational Content of Classical Logic.

https://www.lama.univ-savoie.fr/pagesmembres/ruyer/divers/lecturearticles/coquand/cor3.ps
https://www.lama.univ-savoie.fr/pagesmembres/ruyer/divers/lecturearticles/coquand/cor3.ps

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.

2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

10 / 15

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.

2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A case study in double negation

The two displayed proofs seem to be devoid of computational content: Computation-
ally, it is neither possible to determine the minimal element of an infinite sequence nor
to determine whether a binary sequence contains infinitely many zeros or infinitely
many ones. These claims have no realizer.

However, contrary to expectations, the two proofs do contain an obscured constructive
core, and this core can be uncovered by the two logical metatheorems presented in this
lecture, the double-negation embedding and Friedman’s trick. Details are in Thierry
Coquand’s Computational Content of Classical LogicComputational Content of Classical Logic.

To set the stage, we analyze the lemma used in the first proof. The statement “every
inhabited set of natural numbers contains a minimal element” is not realizable and
hence does not directly have computational content. In fact, this statement is equiv-
alent to the law of excluded middle. Correspondingly, it seems that proofs using it
cannot ever be constructivized. However, as we will see, much more important for
extraction of constructive content is the form of the asserted end results than the
form of auxiliary lemmas used in a proof.

https://www.lama.univ-savoie.fr/pagesmembres/ruyer/divers/lecturearticles/coquand/cor3.ps
https://www.lama.univ-savoie.fr/pagesmembres/ruyer/divers/lecturearticles/coquand/cor3.ps

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.

2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

Proof of 1 . There is some n ∈ X . By lem , either ∃k ∈ X . k < n
or not. In the first case, we continue by induction. Else n is minimal.

10 / 15

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.

2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

Proof of 1 . There is some n ∈ X . By lem , either ∃k ∈ X . k < n
or not. In the first case, we continue by induction. Else n is minimal.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A case study in double negation

The two displayed proofs seem to be devoid of computational content: Computation-
ally, it is neither possible to determine the minimal element of an infinite sequence nor
to determine whether a binary sequence contains infinitely many zeros or infinitely
many ones. These claims have no realizer.

However, contrary to expectations, the two proofs do contain an obscured constructive
core, and this core can be uncovered by the two logical metatheorems presented in this
lecture, the double-negation embedding and Friedman’s trick. Details are in Thierry
Coquand’s Computational Content of Classical LogicComputational Content of Classical Logic.

To set the stage, we analyze the lemma used in the first proof. The statement “every
inhabited set of natural numbers contains a minimal element” is not realizable and
hence does not directly have computational content. In fact, this statement is equiv-
alent to the law of excluded middle. Correspondingly, it seems that proofs using it
cannot ever be constructivized. However, as we will see, much more important for
extraction of constructive content is the form of the asserted end results than the
form of auxiliary lemmas used in a proof.

https://www.lama.univ-savoie.fr/pagesmembres/ruyer/divers/lecturearticles/coquand/cor3.ps
https://www.lama.univ-savoie.fr/pagesmembres/ruyer/divers/lecturearticles/coquand/cor3.ps

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.
2 If X is detachable, then X contains a minimal element.

3 It is not not the case that X contains a minimal element.

Proof of 1 . There is some n ∈ X . By lem , either ∃k ∈ X . k < n
or not. In the first case, we continue by induction. Else n is minimal.

10 / 15

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.
2 If X is detachable, then X contains a minimal element.

3 It is not not the case that X contains a minimal element.

Proof of 1 . There is some n ∈ X . By lem , either ∃k ∈ X . k < n
or not. In the first case, we continue by induction. Else n is minimal.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A case study in double negation

A set X of natural numbers is detachable if and only if for every number n ∈ N,
either n ∈ X or n ̸∈ X . In classical mathematics, every set of natural numbers is
detachable. Constructively, detachability is a nontrivial and computationally mean-
ingful condition. A realizer for detachability of a set X is a machine which reads a
number n as input and determines whether n belongs to X or not (outputting also
corresponding realizers).

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.
2 If X is detachable, then X contains a minimal element.

3 It is not not the case that X contains a minimal element.

Proof of 2 . There is some n ∈ X . By assumption, either ∃k ∈ X . k < n
or not. In the first case, we continue by induction. Else n is minimal.

10 / 15

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.
2 If X is detachable, then X contains a minimal element.

3 It is not not the case that X contains a minimal element.

Proof of 2 . There is some n ∈ X . By assumption, either ∃k ∈ X . k < n
or not. In the first case, we continue by induction. Else n is minimal.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A case study in double negation

A set X of natural numbers is detachable if and only if for every number n ∈ N,
either n ∈ X or n ̸∈ X . In classical mathematics, every set of natural numbers is
detachable. Constructively, detachability is a nontrivial and computationally mean-
ingful condition. A realizer for detachability of a set X is a machine which reads a
number n as input and determines whether n belongs to X or not (outputting also
corresponding realizers).

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.
2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

Proof of 2 . There is some n ∈ X . By assumption, either ∃k ∈ X . k < n
or not. In the first case, we continue by induction. Else n is minimal.

10 / 15

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.
2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

Proof of 2 . There is some n ∈ X . By assumption, either ∃k ∈ X . k < n
or not. In the first case, we continue by induction. Else n is minimal.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A case study in double negation

A set X of natural numbers is detachable if and only if for every number n ∈ N,
either n ∈ X or n ̸∈ X . In classical mathematics, every set of natural numbers is
detachable. Constructively, detachability is a nontrivial and computationally mean-
ingful condition. A realizer for detachability of a set X is a machine which reads a
number n as input and determines whether n belongs to X or not (outputting also
corresponding realizers).

Instead of strengthening the assumption, we can also weaken the conclusion. State-
ment 3merely asserts that it is impossible that nominimum exists. The double-negation
embedding reviewed on the next slide explains why it can be expected a priori that
this weakening allows us to give a constructive proof.

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.
2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

Proof of 3 . There is some n ∈ X . Assume that X does not contain a
minimum. Then it is not the case that ∃k ∈ X . k < n, as else ⊥ by
induction. Hence n is minimal. This is a contradiction.

10 / 15

A case study in double negation

How to extract constructive proofs from classical proofs as the following?
1 Thm. Every infinite sequence α : N → N is good in that there

are numbers i < j such that α(i) ≤ α(j).
Proof. By lem , there is a minimal value α(i). Set j := i + 1.

2 Thm. Every infinite binary sequence contains repeated terms.
Proof. By the infinite box principle, infinitely many terms are
zeros or are ones. In either case the claim follows.

Lemma. Let X be an inhabited set of natural numbers.
1 Assuming lem , the set X contains a minimal element.
2 If X is detachable, then X contains a minimal element.
3 It is not not the case that X contains a minimal element.

Proof of 3 . There is some n ∈ X . Assume that X does not contain a
minimum. Then it is not the case that ∃k ∈ X . k < n, as else ⊥ by
induction. Hence n is minimal. This is a contradiction.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

A case study in double negation

A set X of natural numbers is detachable if and only if for every number n ∈ N,
either n ∈ X or n ̸∈ X . In classical mathematics, every set of natural numbers is
detachable. Constructively, detachability is a nontrivial and computationally mean-
ingful condition. A realizer for detachability of a set X is a machine which reads a
number n as input and determines whether n belongs to X or not (outputting also
corresponding realizers).

Instead of strengthening the assumption, we can also weaken the conclusion. State-
ment 3merely asserts that it is impossible that nominimum exists. The double-negation
embedding reviewed on the next slide explains why it can be expected a priori that
this weakening allows us to give a constructive proof.

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.
Cor. If PA proves φ, then HA proves φ¬¬.
Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥.

11 / 15

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.
Cor. If PA proves φ, then HA proves φ¬¬.
Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

The double-negation embedding

Minimal logic is intuitionistic logic minus ex falsum quodlibet (⊥ ⊢⃗x φ).

The double-negation embedding builds on a fundamental observation: While the
law of excluded middle is not available in minimal or intuitionistic logic, the double
negation of every instance is—for every formula φ, the formula ¬¬(φ ∨ ¬φ) is an
intuitionistic tautology:

In order to show ¬¬(φ ∨ ¬φ), assume ¬(φ ∨ ¬φ) and deduce ⊥.
As a preparatory step, we verify¬φ: Ifφ, then in particularφ∨¬φ, hence⊥
by assumption.
Having established ¬φ, we notice that also φ∨¬φ, hence⊥ by assumption.

Also, a doubly negated statement is not a dead end. Instead, we can continue reasoning,
by the following tautology (“Kleisli extension”, “monadic bind”, “nucleus axiom”):

(¬¬φ ∧ (φ⇒ ¬¬ψ)) =⇒ ¬¬ψ

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.
Cor. If PA proves φ, then HA proves φ¬¬.
Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥.

11 / 15

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.
Cor. If PA proves φ, then HA proves φ¬¬.
Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

The double-negation embedding

Minimal logic is intuitionistic logic minus ex falsum quodlibet (⊥ ⊢⃗x φ).

The double-negation embedding builds on a fundamental observation: While the
law of excluded middle is not available in minimal or intuitionistic logic, the double
negation of every instance is—for every formula φ, the formula ¬¬(φ ∨ ¬φ) is an
intuitionistic tautology:

In order to show ¬¬(φ ∨ ¬φ), assume ¬(φ ∨ ¬φ) and deduce ⊥.
As a preparatory step, we verify¬φ: Ifφ, then in particularφ∨¬φ, hence⊥
by assumption.
Having established ¬φ, we notice that also φ∨¬φ, hence⊥ by assumption.

Also, a doubly negated statement is not a dead end. Instead, we can continue reasoning,
by the following tautology (“Kleisli extension”, “monadic bind”, “nucleus axiom”):

(¬¬φ ∧ (φ⇒ ¬¬ψ)) =⇒ ¬¬ψ

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.

Cor. If PA proves φ, then HA proves φ¬¬.
Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥.

11 / 15

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.

Cor. If PA proves φ, then HA proves φ¬¬.
Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

The double-negation embedding

Minimal logic is intuitionistic logic minus ex falsum quodlibet (⊥ ⊢⃗x φ).

The double-negation embedding builds on a fundamental observation: While the
law of excluded middle is not available in minimal or intuitionistic logic, the double
negation of every instance is—for every formula φ, the formula ¬¬(φ ∨ ¬φ) is an
intuitionistic tautology:

In order to show ¬¬(φ ∨ ¬φ), assume ¬(φ ∨ ¬φ) and deduce ⊥.
As a preparatory step, we verify¬φ: Ifφ, then in particularφ∨¬φ, hence⊥
by assumption.
Having established ¬φ, we notice that also φ∨¬φ, hence⊥ by assumption.

Also, a doubly negated statement is not a dead end. Instead, we can continue reasoning,
by the following tautology (“Kleisli extension”, “monadic bind”, “nucleus axiom”):

(¬¬φ ∧ (φ⇒ ¬¬ψ)) =⇒ ¬¬ψ
The three parts of the theorem are each proven by induction, on the structure of φ
for the first two parts and on the structure of derivations for the third part. Carrying
this out is an instructive exercise!

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.
Cor. If PA proves φ, then HA proves φ¬¬.

Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥.

11 / 15

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.
Cor. If PA proves φ, then HA proves φ¬¬.

Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

The double-negation embedding

The corollary follows from the theorem because HA proves the double-negation
translation of every axiom of PA. For instance, the translation of the axiom

∀x :N . x + 0 = x

is
∀x :N . ¬¬(x + 0 = x),

and this weaker statement is provable thanks to the intuitionistic (even minimal)
tautology φ⇒ ¬¬φ.

Similarly, the translation of an instance of the induction scheme

φ(0) ∧
(
∀x :N . φ(x) ⇒ φ(S(x))

)
=⇒ ∀x :N . φ(x)

is again an instance of the induction scheme:

φ(0)¬¬ ∧
(
∀x :N . φ(x)¬¬ ⇒ φ(S(x))¬¬) =⇒ ∀x :N . φ(x)¬¬

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.
Cor. If PA proves φ, then HA proves φ¬¬.
Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥. 11 / 15

The double-negation embedding

Def. For formulas over a fixed first-order signature, the ¬¬-translation
φ 7→ φ¬¬ is defined by the following clauses.

(φatomic)
¬¬ :≡ ¬¬φatomic (φ⇒ ψ)¬¬ :≡ (φ¬¬ ⇒ ψ¬¬)

⊥¬¬ :≡ ¬¬⊥ ⊤¬¬ :≡ ⊤
(φ ∨ ψ)¬¬ :≡ ¬¬(φ¬¬ ∨ ψ¬¬) (φ ∧ ψ)¬¬ :≡ (φ¬¬ ∧ ψ¬¬)

(∃x :X . φ)¬¬ :≡ ¬¬(∃x :X . φ¬¬) (∀x :X . φ)¬¬ :≡ (∀x :X . φ¬¬)

Ex. (∀a:X .∃b:X . a = b ∨ . . .)¬¬ ≡ (∀a:X .¬¬∃b:X .¬¬(¬¬(a = b) ∨ (. . .)¬¬)).

Prop. Classically, φ⇔ φ¬¬.

Thm. For every formula φ and set of formulas Γ:
1 Minimally, ¬¬(φ¬¬) ⇒ φ¬¬.
2 Minimally, φ¬¬ ⇔ ¬¬φ in case that φ is geometric (R⊤⊥∧∨∃

∨
).

3 If Γ entails φ classically, then Γ¬¬ entails φ¬¬ minimally.
Cor. If PA proves φ, then HA proves φ¬¬.
Rem. Theorem and corollary hold for every local operator∇ in place of¬¬,
in particular for ¬¬¬¬φ := ((φ⇒ ⊥⊥) ⇒ ⊥⊥) for some arbitrary formula ⊥⊥.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

The double-negation embedding

Live demowith Agda code for the theorem on all infinite sequences of natural numbers being goodAgda code for the theorem on all infinite sequences of natural numbers
being good:

1. The first proof there implements the classical proof, postulating the law of
excluded middle as an unprovable axiom. Thereby Agda can verify the classical
proof to be correct, however trying to run the proof will get stuck on the
postulated lem-oracle.

2. The second proof rewrites the statement of the theorem and its proof by the
double-negation translation. The result is a constructive proof which doesn’t
rely on postulates; however there is still no direct computational content, as
the asserted claim is a (doubly) negated statement.

3. In a logical sleight of hand, the third proof imports the second proof but spe-
cializes ⊥, which was an arbitrary constant there, to the asserted claim. The
tautology ¬¬¬¬⊥⊥ ⇒ ⊥⊥ of minimal logic is then used to escape the double-
negation monad and obtain a constructive proof of the full result.

https://agdapad.quasicoherent.io/~AgdaPadova/html/Dickson-pc2022.html
https://agdapad.quasicoherent.io/~AgdaPadova/html/Dickson-pc2022.html
https://agdapad.quasicoherent.io/~AgdaPadova/html/Dickson-pc2022.html

Barr’s theorem / Friedman’s trick / A-translation

Thm. Let Γ be a set of geometric sequents over a fixed signature.
Let σ be a geometric sequent. Then the following are equivalent:

0 σ holds for the generic model of Γ (in its classifying topos).
1 σ is provable from Γ in geometric logic.
2 σ is provable from Γ in intuitionistic logic.
3 σ is provable from Γ in classical logic.
4 (Assuming zorn) σ is provable from Γ in classical logic with ac.

Proof of “ 3 ⇒ 2”. Write σ ≡ (α ⊢⃗x β). Then intuitionistically,

α =⇒ ¬¬α⇐⇒ α¬¬ =⇒ β¬¬ ⇐⇒ ¬¬β ≡ ((β=⇒⊥)⇒⊥)

=⇒ β.

12 / 15

Barr’s theorem / Friedman’s trick / A-translation

Thm. Let Γ be a set of geometric sequents over a fixed signature.
Let σ be a geometric sequent. Then the following are equivalent:

0 σ holds for the generic model of Γ (in its classifying topos).
1 σ is provable from Γ in geometric logic.
2 σ is provable from Γ in intuitionistic logic.
3 σ is provable from Γ in classical logic.
4 (Assuming zorn) σ is provable from Γ in classical logic with ac.

Proof of “ 3 ⇒ 2”. Write σ ≡ (α ⊢⃗x β). Then intuitionistically,

α =⇒ ¬¬α⇐⇒ α¬¬ =⇒ β¬¬ ⇐⇒ ¬¬β ≡ ((β=⇒⊥)⇒⊥)

=⇒ β.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

Barr’s theorem / Friedman’s trick / A-translation

Barr’s theorem / Friedman’s trick / A-translation

Thm. Let Γ be a set of geometric sequents over a fixed signature.
Let σ be a geometric sequent. Then the following are equivalent:

0 σ holds for the generic model of Γ (in its classifying topos).
1 σ is provable from Γ in geometric logic.
2 σ is provable from Γ in intuitionistic logic.
3 σ is provable from Γ in classical logic.
4 (Assuming zorn) σ is provable from Γ in classical logic with ac.

Proof of “ 3 ⇒ 2”. Write σ ≡ (α ⊢⃗x β). Then intuitionistically,

α =⇒ ¬¬¬¬α⇐⇒ α¬¬¬¬ =⇒ β¬¬¬¬ ⇐⇒ ¬¬¬¬β ≡ ((β=⇒⊥⊥)⇒⊥⊥)

=⇒ β.

12 / 15

Barr’s theorem / Friedman’s trick / A-translation

Thm. Let Γ be a set of geometric sequents over a fixed signature.
Let σ be a geometric sequent. Then the following are equivalent:

0 σ holds for the generic model of Γ (in its classifying topos).
1 σ is provable from Γ in geometric logic.
2 σ is provable from Γ in intuitionistic logic.
3 σ is provable from Γ in classical logic.
4 (Assuming zorn) σ is provable from Γ in classical logic with ac.

Proof of “ 3 ⇒ 2”. Write σ ≡ (α ⊢⃗x β). Then intuitionistically,

α =⇒ ¬¬¬¬α⇐⇒ α¬¬¬¬ =⇒ β¬¬¬¬ ⇐⇒ ¬¬¬¬β ≡ ((β=⇒⊥⊥)⇒⊥⊥)

=⇒ β.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

Barr’s theorem / Friedman’s trick / A-translation

Barr’s theorem / Friedman’s trick / A-translation

Thm. Let Γ be a set of geometric sequents over a fixed signature.
Let σ be a geometric sequent. Then the following are equivalent:

0 σ holds for the generic model of Γ (in its classifying topos).
1 σ is provable from Γ in geometric logic.
2 σ is provable from Γ in intuitionistic logic.
3 σ is provable from Γ in classical logic.
4 (Assuming zorn) σ is provable from Γ in classical logic with ac.

Proof of “ 3 ⇒ 2”. Write σ ≡ (α ⊢⃗x β). Then intuitionistically,

α =⇒ ¬¬¬¬α⇐⇒ α¬¬¬¬ =⇒ β¬¬¬¬ ⇐⇒ ¬¬¬¬β ≡ ((β=⇒β)⇒β)

=⇒ β.

12 / 15

Barr’s theorem / Friedman’s trick / A-translation

Thm. Let Γ be a set of geometric sequents over a fixed signature.
Let σ be a geometric sequent. Then the following are equivalent:

0 σ holds for the generic model of Γ (in its classifying topos).
1 σ is provable from Γ in geometric logic.
2 σ is provable from Γ in intuitionistic logic.
3 σ is provable from Γ in classical logic.
4 (Assuming zorn) σ is provable from Γ in classical logic with ac.

Proof of “ 3 ⇒ 2”. Write σ ≡ (α ⊢⃗x β). Then intuitionistically,

α =⇒ ¬¬¬¬α⇐⇒ α¬¬¬¬ =⇒ β¬¬¬¬ ⇐⇒ ¬¬¬¬β ≡ ((β=⇒β)⇒β)

=⇒ β.

20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

Barr’s theorem / Friedman’s trick / A-translation

Barr’s theorem / Friedman’s trick / A-translation

Thm. Let Γ be a set of geometric sequents over a fixed signature.
Let σ be a geometric sequent. Then the following are equivalent:

0 σ holds for the generic model of Γ (in its classifying topos).
1 σ is provable from Γ in geometric logic.
2 σ is provable from Γ in intuitionistic logic.
3 σ is provable from Γ in classical logic.
4 (Assuming zorn) σ is provable from Γ in classical logic with ac.

Proof of “ 3 ⇒ 2”. Write σ ≡ (α ⊢⃗x β). Then intuitionistically,

α =⇒ ¬¬¬¬α⇐⇒ α¬¬¬¬ =⇒ β¬¬¬¬ ⇐⇒ ¬¬¬¬β ≡ ((β=⇒β)⇒β) =⇒ β.

12 / 15

Barr’s theorem / Friedman’s trick / A-translation

Thm. Let Γ be a set of geometric sequents over a fixed signature.
Let σ be a geometric sequent. Then the following are equivalent:

0 σ holds for the generic model of Γ (in its classifying topos).
1 σ is provable from Γ in geometric logic.
2 σ is provable from Γ in intuitionistic logic.
3 σ is provable from Γ in classical logic.
4 (Assuming zorn) σ is provable from Γ in classical logic with ac.

Proof of “ 3 ⇒ 2”. Write σ ≡ (α ⊢⃗x β). Then intuitionistically,

α =⇒ ¬¬¬¬α⇐⇒ α¬¬¬¬ =⇒ β¬¬¬¬ ⇐⇒ ¬¬¬¬β ≡ ((β=⇒β)⇒β) =⇒ β.20
22
-1
0-
04

Extraction of programs from proofs
Proof transformations

Barr’s theorem / Friedman’s trick / A-translation

The proof transformation for “3 ⇒ 2” is explicit in nature, feasible in practice and
increases the proof length only polynomially. There is also an intriguing alternative approach by Giulio Fellin, Sara Negri and Eugenio Orlandelliintriguing alternative
approach by Giulio Fellin, Sara Negri and Eugenio Orlandelli employing cut elimina-
tion (thereby increasing the proof length substantially, but conceptually beneficial in
other aspects). Furthermore, this metatheorem can also be cast in semantic terms:
Every Grothendieck topos admits a cover (a surjective geometric morphism from
another Grothendieck topos) by a Grothendieck topos which is boolean. This can
be obtained by first adjoining a generic proposition χ and then taking sheaves with
respect to the modality ((· ⇒ χ) ⇒ χ).
Applied to the classifying topos of Γ, this insight yields a proof of “3 ⇒ 0”, since
pullback along surjective geometric morphisms reflects validity of geometric sequents.
Furthermore, every Grothendieck topos admits a cover by a Grothendieck topos over
a complete Boolean algebra. Assuming Zorn’s lemma in the metatheory, this topos
validates lem and zorn, hence ac. This shows “4 ⇒ 0”.
An introduction to topos-theoretic generic models with a view towards applications
in constructive commutative algebra is contained in this surveythis survey.

https://drops.dagstuhl.de/opus/volltexte/2022/16776/pdf/LIPIcs-TYPES-2021-7.pdf
https://drops.dagstuhl.de/opus/volltexte/2022/16776/pdf/LIPIcs-TYPES-2021-7.pdf
https://drops.dagstuhl.de/opus/volltexte/2022/16776/pdf/LIPIcs-TYPES-2021-7.pdf
https://arxiv.org/abs/2012.13850
https://arxiv.org/abs/2012.13850

Lecture III:
Extracting constructive proofs from invalid* proofs

* higher-order proofs of first-order statements using the assumption
that a given (perhaps uncountable) set is countable

C Qp F1 ∞

13 / 15

Lecture III:
Extracting constructive proofs from invalid* proofs

* higher-order proofs of first-order statements using the assumption
that a given (perhaps uncountable) set is countable

C Qp F1 ∞

20
22
-1
0-
04

Extraction of programs from proofs
Constructive proofs from invalid proofs

Lecture III:
Extracting constructive proofs from invalid* proofs

* higher-order proofs of first-order statements using the assumption
that a given (perhaps uncountable) set is countable

C Qp F1 ∞ 13 / 15

Lecture III:
Extracting constructive proofs from invalid* proofs

* higher-order proofs of first-order statements using the assumption
that a given (perhaps uncountable) set is countable

C Qp F1 ∞

20
22
-1
0-
04

Extraction of programs from proofs
Constructive proofs from invalid proofs

Lecture III:
Extracting constructive proofs from invalid* proofs

* higher-order proofs of first-order statements using the assumption
that a given (perhaps uncountable) set is countable

C Qp F1 ∞ 13 / 15

Lecture III:
Extracting constructive proofs from invalid* proofs

* higher-order proofs of first-order statements using the assumption
that a given (perhaps uncountable) set is countable

C Qp F1 ∞

20
22
-1
0-
04

Extraction of programs from proofs
Constructive proofs from invalid proofs

Thm. 1. From every proof p of a statement φ such that

1. the assertion φ is a first-order statement,
2. the proof p is constructive,
3. the proof p is formulated in a certain higher-order system (in particular, the

proof may, unlike its end result, freely employ higher-order notions) and
4. for a certain set X appearing in p, the proof assumes that X is countable,

a constructive proof of the same statement φ, set in the same system, but without
requiring the countability assumption can be extracted.

Lecture III:
Extracting constructive proofs from invalid* proofs

* higher-order proofs of first-order statements using the assumption
that a given (perhaps uncountable) set is countable

C Qp F1 ∞ 13 / 15

Lecture III:
Extracting constructive proofs from invalid* proofs

* higher-order proofs of first-order statements using the assumption
that a given (perhaps uncountable) set is countable

C Qp F1 ∞

20
22
-1
0-
04

Extraction of programs from proofs
Constructive proofs from invalid proofs

Thm. 2. From every proof p of a statement φ such that

1. the assertion φ is a geometric implication,
2. the proof p is classical (constructive + lem, but still no zorn),
3. the proof p is formulated in a certain higher-order system (in particular, the

proof may, unlike its end result, freely employ higher-order notions) and
4. for a certain set X appearing in p, the proof assumes that X is countable,

a classical proof of the same statement φ, set in the same system, but without requiring
the countability assumption can be extracted.

A quantifier for finite approximations

Let X be a (perhaps uncountable) set. By a finite approximation to
a surjection N ↠ X , we mean a finite list of elements of X . Notation:

empty list: []
extension: [x1, . . . , xn] ::r xn+1 = [x1, . . . , xn, xn+1]

refinement relation: [x1, . . . , xn, xn+1, xn+m] ⪯ [x1, . . . , xn]
element access: σ[i] = element at position i in σ

For monotone predicates P of finite lists, we introduce a quantifier∇
such that “∇τ⪯σ. P(τ)” expresses that no matter how σ evolves to
a better approximation τ , eventually P(τ) will hold.

P(σ)
∇τ⪯σ. P(τ)

(σ ∈ X∗)
∀x∈X . ∇τ⪯(σ::rx). P(τ)

∇τ⪯σ. P(τ)
(σ ∈ X∗)

∀τ⪯σ. a ∈ τ ⇒ ∇υ⪯τ . P(υ)
∇τ⪯σ. P(τ)

(σ ∈ X∗, a ∈ X)

14 / 15

A quantifier for finite approximations

Let X be a (perhaps uncountable) set. By a finite approximation to
a surjection N ↠ X , we mean a finite list of elements of X . Notation:

empty list: []
extension: [x1, . . . , xn] ::r xn+1 = [x1, . . . , xn, xn+1]

refinement relation: [x1, . . . , xn, xn+1, xn+m] ⪯ [x1, . . . , xn]
element access: σ[i] = element at position i in σ

For monotone predicates P of finite lists, we introduce a quantifier∇
such that “∇τ⪯σ. P(τ)” expresses that no matter how σ evolves to
a better approximation τ , eventually P(τ) will hold.

P(σ)
∇τ⪯σ. P(τ)

(σ ∈ X∗)
∀x∈X . ∇τ⪯(σ::rx). P(τ)

∇τ⪯σ. P(τ)
(σ ∈ X∗)

∀τ⪯σ. a ∈ τ ⇒ ∇υ⪯τ . P(υ)
∇τ⪯σ. P(τ)

(σ ∈ X∗, a ∈ X)

20
22
-1
0-
04

Extraction of programs from proofs
Constructive proofs from invalid proofs

A quantifier for finite approximations

A quantifier for finite approximations

Let X be a (perhaps uncountable) set. By a finite approximation to
a surjection N ↠ X , we mean a finite list of elements of X . Notation:

empty list: []
extension: [x1, . . . , xn] ::r xn+1 = [x1, . . . , xn, xn+1]

refinement relation: [x1, . . . , xn, xn+1, xn+m] ⪯ [x1, . . . , xn]
element access: σ[i] = element at position i in σ

For monotone predicates P of finite lists, we introduce a quantifier∇
such that “∇τ⪯σ. P(τ)” expresses that no matter how σ evolves to
a better approximation τ , eventually P(τ) will hold.

P(σ)
∇τ⪯σ. P(τ)

(σ ∈ X∗)
∀x∈X . ∇τ⪯(σ::rx). P(τ)

∇τ⪯σ. P(τ)
(σ ∈ X∗)

∀τ⪯σ. a ∈ τ ⇒ ∇υ⪯τ . P(υ)
∇τ⪯σ. P(τ)

(σ ∈ X∗, a ∈ X)

14 / 15

A quantifier for finite approximations

Let X be a (perhaps uncountable) set. By a finite approximation to
a surjection N ↠ X , we mean a finite list of elements of X . Notation:

empty list: []
extension: [x1, . . . , xn] ::r xn+1 = [x1, . . . , xn, xn+1]

refinement relation: [x1, . . . , xn, xn+1, xn+m] ⪯ [x1, . . . , xn]
element access: σ[i] = element at position i in σ

For monotone predicates P of finite lists, we introduce a quantifier∇
such that “∇τ⪯σ. P(τ)” expresses that no matter how σ evolves to
a better approximation τ , eventually P(τ) will hold.

P(σ)
∇τ⪯σ. P(τ)

(σ ∈ X∗)
∀x∈X . ∇τ⪯(σ::rx). P(τ)

∇τ⪯σ. P(τ)
(σ ∈ X∗)

∀τ⪯σ. a ∈ τ ⇒ ∇υ⪯τ . P(υ)
∇τ⪯σ. P(τ)

(σ ∈ X∗, a ∈ X)

20
22
-1
0-
04

Extraction of programs from proofs
Constructive proofs from invalid proofs

A quantifier for finite approximations

The generic surjection

Def. The ∇-translation φ 7→ φ∇ into formulas with a free variable
σ : X∗ (denoting the current stage) is defined by the following clauses.

(φatomic)
∇ :≡ ∇τ⪯σ. φatomic

⊥∇ :≡ ∇τ⪯σ. ⊥
(φ ∨ ψ)∇ :≡ ∇τ⪯σ. (φ∇[τ/σ] ∨ ψ∇[τ/σ])

(∃x : X . φ)∇ :≡ ∇τ⪯σ. (∃x : X . φ∇[τ/σ])

(φ⇒ ψ)∇ :≡ ∀τ⪯σ. (φ∇[τ/σ] ⇒ ψ∇[τ/σ])

⊤∇ :≡ ⊤
(φ ∧ ψ)∇ :≡ (φ∇ ∧ ψ∇)

(∀x : X . φ)∇ :≡ (∀x : X . φ∇[σ/τ])

(pα(n)=x)∇ :≡ (∇τ⪯σ. (len(τ) > n ∧ τ [n] = x))

Ex. (∀x :X . ∃n :N. pα(n)=x)∇ ≡
(∀x :X . ∇τ⪯σ. ∃n :N. ∇υ⪯τ . (len(υ) > n ∧ υ[n] = x)).

Thm. [Joyal–Tierney 1984] For first-order formulas φ not referring
to pα, φ∇ ⇒ φ intuitionistically. 15 / 15

The generic surjection

Def. The ∇-translation φ 7→ φ∇ into formulas with a free variable
σ : X∗ (denoting the current stage) is defined by the following clauses.

(φatomic)
∇ :≡ ∇τ⪯σ. φatomic

⊥∇ :≡ ∇τ⪯σ. ⊥
(φ ∨ ψ)∇ :≡ ∇τ⪯σ. (φ∇[τ/σ] ∨ ψ∇[τ/σ])

(∃x : X . φ)∇ :≡ ∇τ⪯σ. (∃x : X . φ∇[τ/σ])

(φ⇒ ψ)∇ :≡ ∀τ⪯σ. (φ∇[τ/σ] ⇒ ψ∇[τ/σ])

⊤∇ :≡ ⊤
(φ ∧ ψ)∇ :≡ (φ∇ ∧ ψ∇)

(∀x : X . φ)∇ :≡ (∀x : X . φ∇[σ/τ])

(pα(n)=x)∇ :≡ (∇τ⪯σ. (len(τ) > n ∧ τ [n] = x))

Ex. (∀x :X . ∃n :N. pα(n)=x)∇ ≡
(∀x :X . ∇τ⪯σ. ∃n :N. ∇υ⪯τ . (len(υ) > n ∧ υ[n] = x)).

Thm. [Joyal–Tierney 1984] For first-order formulas φ not referring
to pα, φ∇ ⇒ φ intuitionistically.

20
22
-1
0-
04

Extraction of programs from proofs
Constructive proofs from invalid proofs

The generic surjection

	Realizability theory
	Proof transformations
	Constructive proofs from invalid proofs

