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Constructive forcing

These are the slides for a three-part lecture series for the autumn school Proof and ComputationProof and Computation
organized by Klaus Mainzer, Peter Schuster and Helmut Schwichtenberg, held in Herrsching from
September 20th to September 16th, 2023.

We explore, in a constructive metatheory, the “Kripke–Joyal semantics of the internal language
of Grothendieck toposes over sites given by preorders” together with applications in constructive
algebra and combinatorics, but without presupposing familiarity with or using language from topos
or category theory.

https://www.mathematik.uni-muenchen.de/~schwicht/pc23.php
https://www.mathematik.uni-muenchen.de/~schwicht/pc23.php


Let a continuous family of symmetric matrices be given:a11(t) · · · a1n(t)
... ...

an1(t) · · · ann(t)


Then for every parameter value t ∈ Ω, classically there is
▶ a full list of eigenvalues λ1(t), . . . , λn(t) and
▶ an eigenvector basis (v1(t), . . . , vn(t)).

Can locally the functions λi be chosen to be continuous?
How about the vi?
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The slide presents a question on calculus. Constructive forcing establishes a connection with
constructive linear algebra; we will understand that:

1. The eigenvalues (defined as the zeros of the characteristic polynomial) locally depend continu-
ously on the parameter because it is a theorem of constructive linear algebra that symmetric
matrices have a full list of eigenvalues.

2. The eigenvectors can not be expected to locally depend continuously because it is not a
theorem of constructive linear algebra that symmetric matrices have an eigenvector basis.

3. There is a dense open subset of the parameter space which restores continuous dependence
because it is a theorem of constructive linear algebra that every symmetric matrix does
not not have an eigenvector basis.

A simple example where the eigenvectors cannot be chosen to locally depend continuously on the
parameter is recorded hererecorded here. Removing the origin there yields a suitable dense open subset.

https://mathoverflow.net/a/60563/31233
https://mathoverflow.net/a/60563/31233


A brief timeline

1878 · · · · · ·• Cantor advances the continuum hypothesis, the
claim that 2ℵ0 = ℵ1.

1910s · · · · · ·• Zermelo–Fraenkel set theory emerges.

1920s · · · · · ·• Set theorists pursue additional axioms to settle ch
(one way or another).

1938 · · · · · ·• Gödel proves: If zfc is consistent, so is zfc+ch.

1963 · · · · · ·• Cohen proves: If zfc is consistent, so is zfc+¬ch.

2011 · · · · · ·• Hamkins offers his paper on the multiverse position
in the philosophy of set theory.

2016 · · · · · ·• Oldenziel proposes to study the modal multiverse of
parametrized mathematics.

Judith Roitman

Mainstream mathematics
is beginning to see results
using modern set theoretic

techniques.
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Gödel’s proof is by the L-translation, where L is the “constructible universe”. This translation
“relativizes quantification to L”, for instance the L-translation of

φ :≡
(
∀x.∃y. . . .

)
is φL ≡

(
∀(x ∈ L).∃(y ∈ L). (. . .)L

)
.

We can then verify, in a weak metatheory such as pra, that for every formula φ in the language of
set theory: If zfc+ch ⊢ φ, then zf ⊢ φL.

Specializing to φ :≡ ⊥ we obtain in particular: If zfc is inconsistent, then so is zf. The axiom of
choice does not introduce new inconsistencies.

In modern semantic language: While the axiom of choice and ch might fail in the base universe V
(= the class of all sets), they always hold in L. Gödel’s L was the first inner model (= class-sized
model of set theory) explicitly studied, nowadays we know many.
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A brief timeline

For his proof, Cohen invented the technique of forcing, situated in classical mathematics where the
base universe V is assumed to validate the axioms of zfc.
Recall that a given ring R or group can be extended in various ways, to include “generic elements”
as in R[X ] or elements with prescribed relations as in R[X ]/(X 2 + 1) =: R[i]. The idea of forcing is
to construct similar such extensions, but not of rings but of universes (traditionally set-sized models
of zf or zfc, but also class-sized models, or models of intuitionistic set theories, or models of type
theories, or even models of arithmetic).
In semantic language, from a high level the idea of Cohen’s independency proof is the following:
Whether the base universe V contains a cardinal number intermediate between ℵ0 and 2ℵ0 is
uncertain. But there is a certain extension of the base universe—constructed by forcing—which
does contain such a number. Like the base V , this forcing extension still validates the axioms of zfc.
Hence there cannot be a zfc-proof of ch, as in Cohen’s extension ¬ch holds.
Syntactically, Cohen’s forcing provides us with an explicit formula translationφ 7→ φC such that pra
proves: For every formula φ, if zfc+¬ch ⊢ φ, then zfc ⊢ φC .
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A brief timeline

Joel David Hamkins argues: In view of our rich experience with worlds which validate ch and worlds
which don’t, we shouldn’t be surprised that no proposed new axiom for settling ch is ultimately
convincing.

Instead, we should embrace the multiverse of all models of set theory and explore how the truth
values of statements of interest change when we travel the multiverse (for instance, by passing
from a universe to one of its forcing extensions).

In this generalized sense, the continuum hypothesis is settled: We have a good understanding of the
stability properties of ch under important constructions. In particular, for a certain precise meaning
of “universe” and “extension”, we know that ch is a switch: ( ch ∧ ¬ch); in words: Every
universe can be extended both to a universe in which ch holds and to a universe in which ¬ch
holds.

An exposition and references for further reading about the multiverse position can be found herehere.

https://www.speicherleck.de/iblech/stuff/multiverse.pdf
https://www.speicherleck.de/iblech/stuff/multiverse.pdf
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J. Roitman, The uses of set theory, Math. Intelligencer 14(1) (1992), 63–69.

Forcing is useful not only to explore the range of foundational possibility; it has many more
applications across several subjects of mathematics.

In particular, we will discuss applications of the constructive version of classical set-theoretic forcing
in constructive algebra and combinatorics.



Constructive forcing
Extending the universe in various ways,

similarly how we can extend groups or rings,

in and for constructive mathematics

without presupposing familiarity with

set theory, topos theory, or sheaves.

Outline:
1 What can forcing do for you?
2 Forcing notions and Kripke–Joyal semantics
3 Case studies in constructive algebra and combinatorics
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What can forcing do for you?

1. Explore foundational possibility
There are forcing extensions with
ch, ¬ch, lem, ¬lem, . . .

2. Demonstrate unprovability
The fundamental theorem of algebra is
not constructively provable as there
is a forcing extension where it is false.

3. Harness convenient fictions
For every set, there is a forcing
extension where it is countable.

4. Constructivize classical theories
A preorder X is well iff the generic
sequence N → X is good.

5. Study parametric mathematics
Eigenvectors depend continuously on
the parameter iff, in a suitable forcing
extension, they merely exist.

6. Develop synthetic accounts
As in the lectures by Matthias Hutzler.
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What can forcing do for you?

Forcing ¬ch was the historical use case for forcing.

With constructive forcing, where we do not blanketly assume that the base universe validates lem,
we can inquire the status of lem; a result in this direction is that lem is, like ch in the context of zfc,
a switch:

The base universe can always be extended in such a way as to force ¬lem (in fact, most forcing
extensions will falsify lem even in case the base universe validates it), and also in such a way to
force lem. The latter provides us with a semantic view of one of the techniques for extracting
constructive content from classical proofs, namely the double-negation translation combined by the continuation trickdouble-negation translation combined by the
continuation trick.

https://www.speicherleck.de/iblech/stuff/slides-fischbachau2022.pdf
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What can forcing do for you?

1. Explore foundational possibility
There are forcing extensions with
ch, ¬ch, lem, ¬lem, . . .

2. Demonstrate unprovability
The fundamental theorem of algebra is
not constructively provable as there
is a forcing extension where it is false.

3. Harness convenient fictions
For every set, there is a forcing
extension where it is countable.

4. Constructivize classical theories
A preorder X is well iff the generic
sequence N → X is good.

5. Study parametric mathematics
Eigenvectors depend continuously on
the parameter iff, in a suitable forcing
extension, they merely exist.

6. Develop synthetic accounts
As in the lectures by Matthias Hutzler.
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What can forcing do for you?

We will discuss the particular example of the (naive formulation of the) fundamental theorem of
algebra below.

Forcing has been used to construct countermodels to various questions of constructive (reverse)
mathematics, too many to list here. To give just one pointer, a countermodel for the classical
implication “if there is no infinite descending chain, then the partial order is inductively well-
founded” is presented here: A. Blass, Well-ordering and induction in intuitionistic logic and topoi,
in: Mathematical Logic and Theoretical Computer Science. Ed. by D. Kueker, E. Lopez-Escobar, and C.
Smith. Vol. 106. Lect. Notes Pure Appl. Math. Marcel Dekker, 1987, pp. 29–48.
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What can forcing do for you?

The real numbers don’t contain a number i such that i2 = 0. Still, for many results in real analysis,
it is convenient to broaden our notion of existence and pass to the complex plane; the imaginary
unit is a mathematical phantom in the sense of Gavin Wraithsense of Gavin Wraith, a useful tool helping us deduce results
about real numbers. Nowadays there are few ontological concerns about the imaginary unit: We
understand that, in the end, every statement about complex numbers can be recast as a statement
about pairs of real numbers.

In exactly the same fashion, the objects furnished by forcing can be understood as useful fictions.
We will discuss how statements about the forcing extension can be recast as statements about the
base universe.

Given an inhabited set X in the base universe, most pronouncedly a set which is uncountable or
for which no surjection N↠ X can be efficiently evaluated, a particularly tantalizing fiction is the
generic surjection N↠ X . It exists in a custom-tailored forcing extension of the base universe and is
useful to apply tools made for the countable setting to the uncountable; we will discuss an example
on the next slide.

http://www.wra1th.plus.com/gcw/math/MathPhant.html
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What can forcing do for you?

Typically there are already plenty of maps N → X in the base universe; hence constructing a forcing
extension which contains a “fresh” such map—the so-called generic sequence—is not something
which would usually be contemplated in classical set-theoretic forcing.

In the context of constructive mathematics, however, the generic sequence turns out to be quite
useful. It can be used to cast in a familiar naive language—the language of infinite sequences—
definitions, results and proofs from constructive combinatorics which use constructively more
appropriate inductively defined notions. We will discuss an example below.
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Slides by Matthias Hutzler: Introduction to synthetic algebraic geometryIntroduction to synthetic algebraic geometry

https://matthias-hutzler.de/pc23/slides.pdf
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Maximal ideals
Thm. Let M be a surjective matrix with more rows than columns over a ring A.
Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal m. The matrix is surjective over A/m.
Since A/m is a field, this is a contradiction to basic linear algebra.

Let A be a ring. Does there exist a maximal ideal m ⊆ A?

1 Yes, if Zorn’s lemma is available.
2 Yes, if A is countable and membership of finitely generated ideals is decidable:

Let A = {x0, x1, . . .}. Then set:

m0 := {0}, mn+1 :=

{
mn + (xn), if 1 ̸∈ mn + (xn),
mn, else.

3 Yes, if A is countable (irrespective of membership decidability):
m0 := {0}, mn+1 := mn + ({x ∈ A | x = xn ∧ 1 ̸∈ mn + (xn)}︸ ︷︷ ︸

a certain subsingleton set

)

“a bad joke”
“non-

informative”

4 In the general case: No, but yes in a suitable forcing extension, and
bounded first-order consequences of its existence there do hold in the base universe.

5 / 12
Maximal ideals

Thm. Let M be a surjective matrix with more rows than columns over a ring A.
Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal m. The matrix is surjective over A/m.
Since A/m is a field, this is a contradiction to basic linear algebra.

Let A be a ring. Does there exist a maximal ideal m ⊆ A?

1 Yes, if Zorn’s lemma is available.
2 Yes, if A is countable and membership of finitely generated ideals is decidable:

Let A = {x0, x1, . . .}. Then set:

m0 := {0}, mn+1 :=

{
mn + (xn), if 1 ̸∈ mn + (xn),
mn, else.

3 Yes, if A is countable (irrespective of membership decidability):
m0 := {0}, mn+1 := mn + ({x ∈ A | x = xn ∧ 1 ̸∈ mn + (xn)}︸ ︷︷ ︸

a certain subsingleton set

)

“a bad joke”
“non-

informative”

4 In the general case: No, but yes in a suitable forcing extension, and
bounded first-order consequences of its existence there do hold in the base universe.

20
23
-1
1-
28

Constructive forcing
What can forcing do for you?

Maximal ideals

The theorem on the slide is a generalization of a fact from undergraduate linear algebra: Over a
field, no surjective matrix can have more rows than columns. (“Surjective” here means that the
induced linear map is surjective.)
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Constructive forcing
What can forcing do for you?

Maximal ideals

The theorem on the slide is a generalization of a fact from undergraduate linear algebra: Over a
field, no surjective matrix can have more rows than columns. (“Surjective” here means that the
induced linear map is surjective.)

The slide presents a standard proof as offered by most textbooks on commutative algebra. The proof
is quite efficient from a viewpoint of mathematical organization, as it quickly succeeds in reducing
to the field situation. As such, it is short and memorable.

However, the proof can also be critized for appealing to the transfinite two times; the methods of
the proof are at odds with the concreteness of the statement of the theorem—from given equations
witnessing surjectivity, Mvi = ei, we are asked to deduce the equation 1 = 0.

For this reason, the theorem and its classical proof are often used as case studies for tools and
techniques aiming to extract constructive content from classical proofs. One such technique
employs constructive forcing. The first(?) constructive proof, found directly without using extraction
techniques, is laid out in a beautiful short note by Richmanbeautiful short note by Richman.

https://www.ams.org/journals/proc/1988-103-04/S0002-9939-1988-0954974-5/S0002-9939-1988-0954974-5.pdf
https://www.ams.org/journals/proc/1988-103-04/S0002-9939-1988-0954974-5/S0002-9939-1988-0954974-5.pdf
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Then 1 = 0 in A.
Proof. Assume not. Then there is a maximal ideal m. The matrix is surjective over A/m.
Since A/m is a field, this is a contradiction to basic linear algebra.

(0) = {0}

(1) = Z

(2) (3)

(4) (6)

(5) (7) . . .

maximal among the proper ideals

• ¬(1 ∈ m)

• ¬
(
1 ∈ m+ (x)

)
⇒ x ∈ m

(8) . . .

Let A be a ring. Does there exist a maximal ideal m ⊆ A?

1 Yes, if Zorn’s lemma is available.
2 Yes, if A is countable and membership of finitely generated ideals is decidable:

Let A = {x0, x1, . . .}. Then set:

m0 := {0}, mn+1 :=

{
mn + (xn), if 1 ̸∈ mn + (xn),
mn, else.

3 Yes, if A is countable (irrespective of membership decidability):
m0 := {0}, mn+1 := mn + ({x ∈ A | x = xn ∧ 1 ̸∈ mn + (xn)}︸ ︷︷ ︸

a certain subsingleton set

)

“a bad joke”
“non-

informative”

4 In the general case: No, but yes in a suitable forcing extension, and
bounded first-order consequences of its existence there do hold in the base universe.
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Constructive forcing
What can forcing do for you?

Maximal ideals

The theorem on the slide is a generalization of a fact from undergraduate linear algebra: Over a
field, no surjective matrix can have more rows than columns. (“Surjective” here means that the
induced linear map is surjective.)

The slide presents a standard proof as offered by most textbooks on commutative algebra. The proof
is quite efficient from a viewpoint of mathematical organization, as it quickly succeeds in reducing
to the field situation. As such, it is short and memorable.

However, the proof can also be critized for appealing to the transfinite two times; the methods of
the proof are at odds with the concreteness of the statement of the theorem—from given equations
witnessing surjectivity, Mvi = ei, we are asked to deduce the equation 1 = 0.

For this reason, the theorem and its classical proof are often used as case studies for tools and
techniques aiming to extract constructive content from classical proofs. One such technique
employs constructive forcing. The first(?) constructive proof, found directly without using extraction
techniques, is laid out in a beautiful short note by Richmanbeautiful short note by Richman.
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Constructive forcing
What can forcing do for you?

Maximal ideals

The iterative construction in the countable case without decidability assumptions is due to Krivine;
it was later clarified by Berardi and Valentini. It is a parlor trick, resulting in a subset which formally
verifies the axioms for a maximal ideal but without carrying out any actual work. Indeed, the
resulting ideal will in general not be a detachable subset of the ring.

Surprisingly, there is still computational content in this construction, as explored in this joint paper with Peter Schusterthis joint paper
with Peter Schuster; one interpretation of our observation is that classical proofs don’t “really”
require a maximal ideal; they just use that notion for structuring hidden computations.

https://arxiv.org/abs/2207.03873
https://arxiv.org/abs/2207.03873
https://arxiv.org/abs/2207.03873


Maximal ideals

Let A be a ring. Does there exist a maximal ideal m ⊆ A?

1 Yes, if Zorn’s lemma is available.
2 Yes, if A is countable and membership of finitely generated ideals is decidable:

Let A = {x0, x1, . . .}. Then set:

m0 := {0}, mn+1 :=

{
mn + (xn), if 1 ̸∈ mn + (xn),
mn, else.

3 Yes, if A is countable (irrespective of membership decidability):
m0 := {0}, mn+1 := mn + ({x ∈ A | x = xn ∧ 1 ̸∈ mn + (xn)}︸ ︷︷ ︸

a certain subsingleton set

)

“a bad joke”
“non-

informative”

4 In the general case: No

, but yes in a suitable forcing extension, and
bounded first-order consequences of its existence there do hold in the base universe.

5 / 12
Maximal ideals

Let A be a ring. Does there exist a maximal ideal m ⊆ A?

1 Yes, if Zorn’s lemma is available.
2 Yes, if A is countable and membership of finitely generated ideals is decidable:

Let A = {x0, x1, . . .}. Then set:

m0 := {0}, mn+1 :=

{
mn + (xn), if 1 ̸∈ mn + (xn),
mn, else.

3 Yes, if A is countable (irrespective of membership decidability):
m0 := {0}, mn+1 := mn + ({x ∈ A | x = xn ∧ 1 ̸∈ mn + (xn)}︸ ︷︷ ︸

a certain subsingleton set

)

“a bad joke”
“non-

informative”

4 In the general case: No

, but yes in a suitable forcing extension, and
bounded first-order consequences of its existence there do hold in the base universe.

20
23
-1
1-
28

Constructive forcing
What can forcing do for you?

Maximal ideals



Maximal ideals

Let A be a ring. Does there exist a maximal ideal m ⊆ A?

1 Yes, if Zorn’s lemma is available.
2 Yes, if A is countable and membership of finitely generated ideals is decidable:

Let A = {x0, x1, . . .}. Then set:

m0 := {0}, mn+1 :=

{
mn + (xn), if 1 ̸∈ mn + (xn),
mn, else.

3 Yes, if A is countable (irrespective of membership decidability):
m0 := {0}, mn+1 := mn + ({x ∈ A | x = xn ∧ 1 ̸∈ mn + (xn)}︸ ︷︷ ︸

a certain subsingleton set

)

“a bad joke”
“non-

informative”

4 In the general case: No, but yes in a suitable forcing extension

, and
bounded first-order consequences of its existence there do hold in the base universe.

5 / 12
Maximal ideals

Let A be a ring. Does there exist a maximal ideal m ⊆ A?

1 Yes, if Zorn’s lemma is available.
2 Yes, if A is countable and membership of finitely generated ideals is decidable:

Let A = {x0, x1, . . .}. Then set:

m0 := {0}, mn+1 :=

{
mn + (xn), if 1 ̸∈ mn + (xn),
mn, else.

3 Yes, if A is countable (irrespective of membership decidability):
m0 := {0}, mn+1 := mn + ({x ∈ A | x = xn ∧ 1 ̸∈ mn + (xn)}︸ ︷︷ ︸

a certain subsingleton set

)

“a bad joke”
“non-

informative”

4 In the general case: No, but yes in a suitable forcing extension

, and
bounded first-order consequences of its existence there do hold in the base universe.

20
23
-1
1-
28

Constructive forcing
What can forcing do for you?

Maximal ideals

In a suitable forcing extension, the ring appears countable. Hence we can carry out the iterative
maximal ideal construction there. The resulting ideal will not be part of the base universe (instead,
from the point of view of the base universe we will just have constructed a certain sheaf of ideals
on a certain pointfree space), but bounded first-order consequences of its existence still pass down
to the base.
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Maximal ideals
Thm. Let M be a surjective matrix with more rows than columns over a ring A.
Then 1 = 0 in A.
Proof. (special case) Write M = ( x

y ). By surjectivity, we have u, v ∈ A with

u ( x
y ) = ( 1

0 ) and v ( x
y ) = ( 0

1 ) .

Hence 1 = (vy)(ux) = (uy)(vx) = 0.
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Constructive forcing
What can forcing do for you?

Maximal ideals

Unwinding all the definitions from constructive forcing and from the iterative maximal ideal
construction, and eliminating the application of lem from the classical proof presented before, we
mechanically arrive at the constructive direct proof presented on the slide.



Infinite data

7, 4, 3, . . .

1, 8,

2,

≤

Thm. Every sequence α : N → N is good in that there exist i < j with α(i) ≤ α(j).
Proof. (offensive?) By lem , there is a minimum α(i). Set j := i + 1.

Def. A preorder X is well iff every sequence N → X is good.
Examples. (N,≤), X × Y , X∗, Tree(X)︸ ︷︷ ︸

only classically

. � Don’t quantify over points of spaces
which might not have enough.

Def. A preorder is well iff any of the following equivalent conditions hold:
1 The generic sequence N → X is good.
2 Every sequence N → X in every forcing extension is good.
3 There is a well-founded tree witnessing universal goodness.
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Constructive forcing
What can forcing do for you?
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Ingredients for forcing
To construct a forcing extension, we require:

1 a base universe V
2 a preorder L of forcing conditions in V, pictured as finite approximations
(convention: τ ≼ σ means that τ is a better finite approximation than σ)

3 a covering system governing how finite approximations evolve to better ones
(for each σ ∈ L, a set Cov(σ) ⊆ P(↓σ), with a simulation condition)

In the forcing extension V∇, there will then be a generic filter (ideal object).

For the generic surjection N↠ X

Use finite lists σ ∈ X∗ as forcing conditions,
where τ ≼ σ iff σ is an initial segment of τ ,
and be prepared to grow σ to . . .
(a) one of {σx | x ∈ X}, to make σ more defined

(b) one of {στ | τ ∈ X∗, a ∈ στ}, for any a ∈ X ,
to make σ more surjective

For the generic prime ideal of a ring A
Use f.g. ideals as forcing conditions, where
b ≼ a iff b ⊇ a, and be prepared to grow a
to . . .
(a) one of ∅, if 1 ∈ a, to make a more proper

(b) one of {a+ (x), a+ (y)}, if xy ∈ a, to
make a more prime
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The eventually monad
Let L be a forcing notion.
Let P be a monotone predicate on L (if τ ≼ σ, then Pσ ⇒ Pτ ).
For instance, in the case L = X∗:

Repeats x0 . . . xn−1 :≡ ∃i.∃j. i < j ∧ xi = xj
Good x0 . . . xn−1 :≡ ∃i. ∃j. i < j ∧ xi ≤ xj (for some preorder ≤ on X )

We then define “P | σ” (“P bars σ”) inductively by the following clauses:

1 If Pσ, then P | σ.
2 If P | τ for all τ ∈ R, where R is some covering of σ, then P | σ.

So P | σ expresses in a direct inductive fashion:

“No matter how σ evolves to a better approximation τ , eventually Pτ will hold.”

We use quantifier-like notation: “∇(τ ≼ σ). Pτ” means “P | σ”.
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Proof translations
Thm. Every iqc-proof remains correct, with at most a polynomial increase in length,
if throughout we replace

∃ ⇝ ∃cl, where ∃cl :≡ ¬¬∃,
∨ ⇝ ∨cl, where α ∨cl β :≡ ¬¬(α ∨ β),
= ⇝ =cl, where s =cl t :≡ ¬¬(s = t).

When we say: some statement “holds in V¬¬”,
we mean: its translation holds in V .

Similarly for arbitrary forcing extensions V∇, “just with∇ instead of ¬¬”.

Ex. As ¬¬(φ ∨ ¬φ) is a theorem of iqc, the law of excluded middle holds in V¬¬.
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we mean: its translation holds in V .

Similarly for arbitrary forcing extensions V∇, “just with∇ instead of ¬¬”.

Ex. As ¬¬(φ ∨ ¬φ) is a theorem of iqc, the law of excluded middle holds in V¬¬.
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The ∇-translation
For bounded first-order formulas over the (large) first-order signature which has

1 one sort X for each set X in the base universe,
2 one n-ary function symbol f : X1 × · · · × Xn → Y for each map f : X1 × · · · × Xn → Y ,

3 one n-ary relation symbol R ↪→ X1 × · · · × Xn for each relation R ⊆ X1 × · · · × Xn, and
4 an additional unary relation symbol G ↪→ L (for the generic filter of L),

we recursively define:
σ ⊨ s = t iff ∇σ. JsK = JtK. σ ⊨ R(s1, . . . , sn) iff ∇σ. R(Js1K, . . . , JsnK).
σ ⊨ φ⇒ ψ iff ∀(τ ≼ σ). (τ ⊨ φ) ⇒ (τ ⊨ ψ). σ ⊨ Gτ iff ∇σ. σ ≼ JτK.
σ ⊨ ⊤ iff ⊤. σ ⊨ ⊥ iff ∇σ. ⊥
σ ⊨ φ ∧ ψ iff (σ ⊨ φ) ∧ (σ ⊨ ψ). σ ⊨ φ ∨ ψ iff ∇σ. (σ ⊨ φ) ∨ (σ ⊨ ψ).
σ ⊨ ∀(x :X). φ iff ∀(τ ≼ σ). ∀(x0 ∈ X). τ ⊨ φ[x0/x]. σ ⊨ ∃(x :X). φ iff ∇σ. ∃(x0 ∈ X). σ ⊨ φ[x0/x].

Finally, we say that φ “holds in V∇” iff for all σ ∈ L, σ ⊨ φ.

forcing notion statement about V∇ external meaning

surjection N↠ X “the gen. surj. is surjective” ∀(a∈X).∀(σ∈X∗).∇(τ≼σ).∃(n∈N). τ [n] = a.

map N → X “the gen. sequence is good” Good | [ ].
frame of opens “every complex number has

a square root”
For every open U ⊆ X and every cont. function
f : U → C, there is an open covering U =

⋃
i Ui

such that for each index i, there is a cont. function
g : Ui → C such that g2 = f .

big Zariski “x ̸= 0 ⇒ x inv.” If the only f.p. k-algebra in which x = 0 is the zero
algebra, then x is invertible in k.

little Zariski “every f.g. vector space does
not not have a basis”

Grothendieck’s generic freeness lemma
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Outlook
Passing to and from extensions
Thm. Let φ be a bounded first-order formula not mentioning G. In each of the following
situations, we have that φ holds in V∇ iff φ holds in V :

1 L and all coverings are inhabited (proximality).
2 L contains a top element, every covering of the top element is inhabited, and φ is a

coherent implication (positivity).

The mystery of nongeometric sequents
The generic ideal of a ring is maximal:

(x ∈ a ⇒ 1 ∈ a) =⇒ 1 ∈ a+ (x).

The generic ring is a field:
(x = 0 ⇒ 1 = 0) =⇒ (∃y. xy = 1).

Traveling the multiverse . . .
lem is a switch and holds positively;
being countable is a button.
Every instance of dc holds proximally.
A geometric implication is provable iff it
holds everywhere.
. . . upwards, but always keeping ties to the base. 12 / 12
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Formalities
Def. A forcing notion consists of a preorder L of forcing conditions, and for every σ ∈ L, a
set Cov(σ) ⊆ P(↓σ) of coverings of σ such that: If τ ≼ σ and R ∈ Cov(σ), there should be a
covering S ∈ Cov(τ) such that S ⊆ ↓R.

preorder L coverings of an element σ ∈ L filters of L

1 X∗ {σx | x ∈ X} maps N → X
2 X∗ {σx | x ∈ X}, {στ | τ ∈ X∗, a ∈ στ} for each a ∈ X surjections N↠ X
3 f.g. ideals — ideals
4 f.g. ideals {σ + (a), σ + (b)} for each ab ∈ σ, {} if 1 ∈ σ prime ideals
5 opens U such that σ =

⋃
U points

6 {⋆} {⋆ |φ} ∪ {⋆ | ¬φ} witnesses of lem

Def. A filter of a forcing notion (L,Cov) is a subset F ⊆ L such that
1 F is upward-closed: if τ ≼ σ and if τ ∈ F , then σ ∈ F ;
2 F is downward-directed: F is inhabited, and if α, β ∈ F , then there is a common refinement σ ≼ α, β such that σ ∈ F ; and
3 F splits the covering system: if σ ∈ F and R ∈ Cov(σ), then τ ∈ F for some τ ∈ R.
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