

How should this notion be formalized in HoTT?
$7, \quad 4, \quad 3, \ldots$

How should this notion be formalized in HoTT?
$7, \quad 4, \quad 3, \quad 1, \quad \ldots$

How should this notion be formalized in HoTT?
$7, \quad 4, \quad(3,1, \quad \cdots$

Thm. Every sequence $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ is good in that there exist $i<j$ with $\alpha i \leq \alpha j$.

Thm. Every sequence $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ is good in that there exist $i<j$ with $\alpha i \leq \alpha j$. Proof. (offensive?) By LEM, there is a minimum αi. Set $j:=i+1$.

Thm. Every sequence $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ is good in that there exist $i<j$ with $\alpha i \leq \alpha j$. Proof. (offensive?) By LEM, there is a minimum α. Set $j:=i+1$. Def. (classically) A quasiorder X is well iff every sequence $\mathbb{N} \rightarrow X$ is good.
Examples. (classically) $(\mathbb{N}, \leq), X \times Y, X^{*}, \operatorname{Tree}(X)$.

2,

Thm. Every sequence $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ is good in that there exist $i<j$ with $\alpha i \leq \alpha j$.
Proof. (offensive?) By LEM, there is a minimum αi. Set $j:=i+1$.
Def. (classically) A quasiorder X is well iff every sequence $\mathbb{N} \rightarrow X$ is good.
Examples. (classically) $(\mathbb{N}, \leq), X \times Y, X^{*}, \operatorname{Tree}(X)$.

A naive formalization attempt:
Def. Well $_{\infty}(X, \leq):=\prod_{\alpha: \mathbb{N} \rightarrow X}\left\|\sum_{i: \mathbb{N}} \sum_{j: \mathbb{N}} i<j \times \alpha i \leq \alpha j\right\|_{-1}$

Thm. Every sequence $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ is good in that there exist $i<j$ with $\alpha i \leq \alpha j$.
Proof. (offensive?) By LEM, there is a minimum α. Set $j:=i+1$.
Def. (classically) A quasiorder X is well iff every sequence $\mathbb{N} \rightarrow X$ is good.
Examples. (classically) $(\mathbb{N}, \leq), X \times Y, X^{*}, \operatorname{Tree}(X)$.
A naive formalization attempt:
Def. Well $\infty_{\infty}(X, \leq):=\prod_{\alpha: \mathbb{N} \rightarrow X}\left\|\sum_{i: \mathbb{N}} \sum_{j: \mathbb{N}} i<j \times \alpha i \leq \alpha j\right\|_{-1}$

x philosophically strenuous
X not practical
X not faithful(?)

Lemma. Let X be a well quasiorder. Let $\alpha: \mathbb{N} \rightarrow X$ be a sequence. Assuming lem, there merely is a monotonic subsequence $\alpha i_{0} \leq \alpha i_{1} \leq \cdots$.
Proof. The type

$$
I:=\sum_{i: \mathbb{N}} \neg \sum_{j: \mathbb{N}} i<j \times \alpha i \leq \alpha j
$$

cannot be in bijection with \mathbb{N}, as else the I-extracted subsequence of α would not be good. By lem, the type I is finite. Any index i_{0} larger than all the indices in I is a suitable starting point for a monotonic subsequence.

Lemma. Let X be a well quasiorder. Let $\alpha: \mathbb{N} \rightarrow X$ be a sequence. Assuming lem, there merely is a monotonic subsequence $\alpha i_{0} \leq \alpha i_{1} \leq \cdots$.
Proof. The type

$$
I:=\sum_{i: \mathbb{N}} \neg \sum_{j: \mathbb{N}} i<j \times \alpha i \leq \alpha j
$$

cannot be in bijection with \mathbb{N}, as else the I-extracted subsequence of α would not be good. By lem, the type I is finite. Any index i_{0} larger than all the indices in I is a suitable starting point for a monotonic subsequence.

Prop. Let X and Y be well quasiorders. Assuming lem, $X \times Y$ is well.
Proof. Let an infinite sequence $\gamma: \mathbb{N} \rightarrow X \times Y$ be given. Write $\gamma k=(\alpha k, \beta k)$. By the lemma, there is a monotonic subsequence $\alpha i_{0} \leq \alpha i_{1} \leq \cdots$. Because Y is well, there are indices $n<m$ such that $\beta i_{n} \leq \beta i_{m}$. As also $\alpha i_{n} \leq \alpha i_{m}$, the sequence γ is good.

Lemma. Let X be a well quasiorder. Let $\alpha: \mathbb{N} \rightarrow X$ be a sequence. Assuming lem, there merely is a monotonic subsequence $\alpha i_{0} \leq \alpha i_{1} \leq \cdots$.
Proof. The type

$$
I:=\sum_{i: \mathbb{N}} \neg \sum_{j: \mathbb{N}} i<j \times \alpha i \leq \alpha j
$$

cannot be in bijection with \mathbb{N}, as else the I-extracted subsequence of α would not be good. By lem, the type I is finite. Any index i_{0} larger than all the indices in I is a suitable starting point for a monotonic subsequence.

Prop. Let X and Y be well quasiorders. Assuming lem, $X \times Y$ is well.
Proof. Let an infinite sequence $\gamma: \mathbb{N} \rightarrow X \times Y$ be given. Write $\gamma k=(\alpha k, \beta k)$. By the lemma, there is a monotonic subsequence $\alpha i_{0} \leq \alpha i_{1} \leq \cdots$. Because Y is well, there are indices $n<m$ such that $\beta i_{n} \leq \beta i_{m}$. As also $\alpha i_{n} \leq \alpha i_{m}$, the sequence γ is good.
(2) We cannot trust lem-provided sequences to be available in the type $\mathbb{N} \rightarrow X$.

Similarly with DC.

Sequences depending on an environment

Let X be an hset such that there is no surjection $\mathbb{N} \rightarrow X$. Then the type $\mathbb{N} \rightarrow X$ misses the generic enumeration α of X.

Let X be an hset such that there is no surjection $\mathbb{N} \rightarrow X$. Then the type $\mathbb{N} \rightarrow X$ misses the generic enumeration α of X.

Idea: Approximate (fictitious) surjections $\mathbb{N} \rightarrow X$ by finite sequences $\sigma=x_{0} \ldots x_{n-1}: X^{*}$. Starting with the empty sequence ε, over time, such an approximation can grow to

1 one of σy, where $y: X$, so it becomes more defined; or
2 one of $\sigma \tau$, where $\tau: X^{*}$ such that $a \in \sigma \tau$, so it becomes more surjective.

Sequences depending on an environment

Let X be an hset such that there is no surjection $\mathbb{N} \rightarrow X$. Then the type $\mathbb{N} \rightarrow X$ misses the generic enumeration α of X.

Idea: Approximate (fictitious) surjections $\mathbb{N} \rightarrow X$ by finite sequences $\sigma=x_{0} \ldots x_{n-1}: X^{*}$. Starting with the empty sequence ε, over time, such an approximation can grow to

1 one of σy, where $y: X$, so it becomes more defined; or
$\boxed{2}$ one of $\sigma \tau$, where $\tau: X^{*}$ such that $a \in \sigma \tau$, so it becomes more surjective.
For $k: \mathbb{N}$ and $a: X$, the expression " $\alpha k=a$ " does not denote a proposition but rather a stage-dependent proposition $X^{*} \rightarrow$ Prop, namely $\lambda x_{0} \ldots x_{n-1} . k<n \times x_{k}=a$.

Sequences depending on an environment

Let X be an hset such that there is no surjection $\mathbb{N} \rightarrow X$. Then the type $\mathbb{N} \rightarrow X$ misses the generic enumeration α of X.

Idea: Approximate (fictitious) surjections $\mathbb{N} \rightarrow X$ by finite sequences $\sigma=x_{0} \ldots x_{n-1}: X^{*}$. Starting with the empty sequence ε, over time, such an approximation can grow to

1 one of σy, where $y: X$, so it becomes more defined; or
2 one of $\sigma \tau$, where $\tau: X^{*}$ such that $a \in \sigma \tau$, so it becomes more surjective.
For $k: \mathbb{N}$ and $a: X$, the expression " $\alpha k=a$ " does not denote a proposition but rather a stage-dependent proposition $X^{*} \rightarrow$ Prop, namely $\lambda x_{0} \ldots x_{n-1} . k<n \times x_{k}=a$.

Given a stage-dependent proposition $P, \nabla P \sigma$ expresses that no matter how σ evolves to a better approximation τ, eventually $P \tau$ will hold:

$$
\begin{aligned}
& \text { data } \nabla\left(P: \mathrm{X}^{*} \rightarrow \operatorname{Prop}\right)\left(\sigma: \mathrm{X}^{*}\right): \text { Prop where } \\
& \text { now }: P \sigma \rightarrow \nabla P \sigma \\
& \text { later }_{1}:((y: \mathrm{X}) \rightarrow \nabla P(\sigma y)) \rightarrow \nabla P \sigma \\
& \text { later }_{2}:(a: \mathrm{X}) \rightarrow\left(\left(\tau: \mathrm{X}^{*}\right) \rightarrow a \in \sigma \tau \rightarrow \nabla P(\sigma \tau)\right) \rightarrow \nabla P \sigma
\end{aligned}
$$

For instance, for $P_{a} \sigma:=(a \in \sigma)$, we have $\nabla P_{a} \varepsilon . \quad$ " α is surjective": $(a: \mathrm{X}) \rightarrow \nabla P_{a} \varepsilon$

A naive formalization attempt:
Def. Well $_{\infty}(X, \leq):=\prod_{\alpha: \mathbb{N} \rightarrow X}\left\|\sum_{i: \mathbb{N}} \sum_{j: \mathbb{N}} i<j \times \alpha i \leq \alpha j\right\|_{-1}$

A naive formalization attempt:
Def. Well $_{\infty}(X, \leq):=\prod_{\alpha: \mathbb{N} \rightarrow X}\left\|\sum_{i: \mathbb{N}} \sum_{j: \mathbb{N}} i<j \times \alpha i \leq \alpha j\right\|_{-1}$

An inductive rephrasing:
Def. Well $(X, \leq):=\nabla$ Good ε, where Good $x_{0} \ldots x_{n-1}:=\underset{i: \mathbb{N} j: \mathbb{N}}{\exists}\left(i<j \times x_{i} \leq x_{j}\right)$ and

$$
\begin{aligned}
& \text { data } \nabla\left(P: \mathrm{X}^{*} \rightarrow \operatorname{Prop}\right)\left(\sigma: \mathrm{X}^{*}\right): \text { Prop where } \\
& \text { now : } P \sigma \nabla P \sigma \\
& \text { later }:((y: \mathrm{X}) \rightarrow \nabla P(\sigma y)) \rightarrow \nabla P \sigma
\end{aligned}
$$

In other words: A quasiorder X is well iff the generic sequence $\mathbb{N} \rightarrow X$ is good.
Prop. Let X and Y be well quasiorders. Without assuming lem, $X \times Y$ is well.

A naive formalization attempt:
Def. Well $_{\infty}(X, \leq):=\prod_{\alpha: \mathbb{N} \rightarrow X}\left\|\sum_{i: \mathbb{N}} \sum_{j: \mathbb{N}} i<j \times \alpha i \leq \alpha j\right\|_{-1}$

An inductive rephrasing:
Def. Well $(X, \leq):=\nabla$ Good ε, where Good $x_{0} \ldots x_{n-1}:=\underset{i: \mathbb{N} j: \mathbb{N}}{\exists}\left(i<j \times x_{i} \leq x_{j}\right)$ and

$$
\begin{aligned}
& \text { data } \nabla\left(P: \mathrm{X}^{*} \rightarrow \operatorname{Prop}\right)\left(\sigma: \mathrm{X}^{*}\right): \text { Prop where } \\
& \text { now }: P \sigma \nabla P \sigma \\
& \text { later }:((y: \mathrm{X}) \rightarrow \nabla P(\sigma y)) \rightarrow \nabla P \sigma
\end{aligned}
$$

In other words: A quasiorder X is well iff the generic sequence $\mathbb{N} \rightarrow X$ is good.
Prop. Let X and Y be well quasiorders. Without assuming lem, $X \times Y$ is well.

2We have Well $(X, \leq) \rightarrow$ Well $_{\infty}(X, \leq)$, but the converse only holds in presence of bar induction. How much stronger exactly is the inductive rephrasing?

Grothendieck toposes (= categories of sheaves over sites) are mathematical universes:

- The generic sequence is an honest function $\mathbb{N} \rightarrow X$ in a certain topos \mathcal{E}.
- The generic surjection is an honest surjection in an appropriate subtopos of \mathcal{E}.

■ In the double-negation subtopos of the base, a predicate $Q: \mathbb{N} \rightarrow$ Prop such that

$$
Q x \times Q y \longrightarrow x=y \quad \text { and } \quad \neg \neg \sum_{n: \mathbb{N}} Q n
$$

looks like an ordinary natural number.
A statement holds in a topos iff a certain topos-directed translation holds in the base. For instance, for the double-negation subtopos the translation substitutes

$$
\begin{array}{rlrrl}
\exists & \rightsquigarrow & \exists^{\mathrm{cl}}, & \text { where } & \exists^{\mathrm{cl}} \\
\vee & : \equiv \neg \neg \exists, \\
\vee & \rightsquigarrow \vee^{\mathrm{cl}} & \text { where } & \alpha \vee^{\mathrm{cl}} \beta & : \equiv \neg \neg(\alpha \vee \beta), \\
= & \equiv=^{\mathrm{cl}}, & \text { where } \quad s=^{\mathrm{cl}} t & : \equiv \neg \neg(s=t) .
\end{array}
$$

In general, stage-dependent ∇ instead of $\neg \neg$.

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Proof. (classical) Assume not.

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m}.

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m}.

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m}. The matrix is surjective over A / \mathfrak{m}.

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m}. The matrix is surjective over A / \mathfrak{m}. Since A / \mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m}. The matrix is surjective over A / \mathfrak{m}. Since A / \mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Does there exist a maximal ideal?

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m}. The matrix is surjective over A / \mathfrak{m}. Since A / \mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Does there exist a maximal ideal? Yes, if A is countable. In the general case: No

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m}. The matrix is surjective over A / \mathfrak{m}. Since A / \mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Does there exist a maximal ideal? Yes, if A is countable. In the general case: No, but yes in a suitable topos, and bounded first-order consequences of its existence there pass down to the base.

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then $1=0$ in A.

Proof. (constructive, special case) Write $M=\binom{x}{y}$. By surjectivity, we have $u, v: A$ with

$$
u\binom{x}{y}=\binom{1}{0} \quad \text { and } \quad v\binom{x}{y}=\binom{0}{1} .
$$

Hence $1=(v y)(u x)=(u y)(v x)=0$.

A brief timeline

1878..... Cantor advances the continuum hypothesis, the claim that $2^{\aleph_{0}}=\aleph_{1}$.

A brief timeline

$1878 \cdots$ Cantor advances the continumm hypothesis, the claim
that $2^{\aleph_{0}}=\aleph_{1}$.

A brief timeline

$1878 \ldots \ldots$ Cantor advances the continuum hypothesis, the claim
that $2^{\aleph_{0}}=\aleph_{1}$.

A brief timeline

$1878 \ldots \ldots$ Cantor advances the continuum hypothesis, the claim
that $2^{\aleph_{0}}=\aleph_{1}$.

A brief timeline

$1878 \ldots \ldots$ Cantor advances the continuum hypothesis, the claim
that $2^{\aleph_{0}}=\aleph_{1}$.
$1878 \ldots \ldots$ Cantor advances the continuum hypothesis, the claim
that $2^{\aleph_{0}}=\aleph_{1}$.
$1878 \ldots \ldots$ Cantor advances the continuum hypothesis, the claim
that $2^{\aleph_{0}}=\aleph_{1}$.

A brief timeline

$1878 \ldots \ldots$ Cantor advances the continuum hypothesis, the claim
that $2^{\aleph_{0}}=\aleph_{1}$.

The modal set-theoretic multiverse

Def. A model of set theory is a (perhaps class-sized) structure (M, \in) satisfying axioms such as those of zFc.

Examples.

- V, the class of all sets
- L, Gödel's constructible universe
- $V[G]$, a forcing extension containing a generic filter G of some poset of forcing conditions
- Henkin/term models from consistency of (extensions of) zFC

Def. A model of set theory is a (perhaps class-sized) structure (M, \in) satisfying axioms such as those of zFc.

Examples.

- V, the class of all sets
- L, Gödel's constructible universe
- $V[G]$, a forcing extension containing a generic filter G of some poset of forcing conditions
- Henkin/term models from consistency of (extensions of) zFC

We embrace all models of set theory:

Def. $\diamond \varphi$ iff φ holds in some extension of the current universe.
$\square \varphi$ iff φ holds in all extensions of the current universe.

- $\square(\diamond \mathrm{CH} \wedge \diamond \neg \mathrm{CH})$, the continuum hypothesis is a switch.
$\square \square \diamond \square(X$ is countable $)$, existence of an enumeration is a button.

Def. A statement φ holds ...
1 everywhere $(\square \varphi)$ iff it holds in every topos (over the current base).
2 somewhere $(\diamond \varphi)$ iff it holds in some positive topos.
3 proximally $(\diamond \varphi)$ iff it holds in some positive overt topos.

Def. A statement φ holds ...
1 everywhere $(\square \varphi)$ iff it holds in every topos (over the current base).
2 somewhere $(\diamond \varphi)$ iff it holds in some positive topos.
3 proximally $(\diamond \varphi)$ iff it holds in some positive overt topos.

Traveling the multiverse:

- For every inhabited set X, proximally there is an enumeration $\mathbb{N} \rightarrow X$.
- A quasiorder is well iff everywhere, every sequence is good.
- A ring element is nilpotent iff all prime ideals everywhere contain it.
- For every ring, proximally there is a maximal ideal.
- A relation is well-founded iff everywhere, there is no descending chain.
- Somewhere, the law of excluded middle holds.

Def. A statement φ holds ...
1 everywhere $(\square \varphi)$ iff it holds in every topos (over the current base).
2 somewhere $(\diamond \varphi)$ iff it holds in some positive topos.
3 proximally $(\diamond \varphi)$ iff it holds in some positive overt topos.

Traveling the multiverse:

- For every inhabited set X, proximally there is an enumeration $\mathbb{N} \rightarrow X$.
- A quasiorder is well iff everywhere, every sequence is good.
- A ring element is nilpotent iff all prime ideals everywhere contain it.
- For every ring, proximally there is a maximal ideal.
- A relation is well-founded iff everywhere, there is no descending chain.
- Somewhere, the law of excluded middle holds.

Prop. Let (X, \leq) be a well quasiorder. Then $(<)$, where $x<y \equiv(x \leq y \wedge \neg(y \leq x))$, is well-founded. Proof. Everywhere, there can be no infinite descending chain, as any such would also be good. Unrolling this proof gives a program $\nabla \operatorname{Good} \varepsilon \rightarrow \prod_{x: X} \operatorname{Acc} x$.

The modal topos-theoretic multiverse

Def. A statement φ holds ...

1 everywhere $(\square \varphi)$ iff it holds in every topos (over the current base).
2 somewhere $(\diamond \varphi)$ iff it holds in some positive topos.
3 proximally $(\diamond \varphi)$ iff it holds in some positive overt topos.

Traveling the multiverse:

- For every inhabited set X, proximally there is an enumeration $\mathbb{N} \rightarrow X$.
- A quasiorder is well iff everywhere, every sequence is good.
- A ring element is nilpotent iff all prime ideals everywhere contain it.
- For every ring, proximally there is a maximal ideal.
- A relation is well-founded iff everywhere, there is no descending chain.
- Somewhere, the law of excluded middle holds.

Foreshadowed by:

1984 André Joyal, Miles Tierney. "An extension of the Galois theory of Grothendieck".
1987 Andreas Blass. "Well-ordering and induction in intuitionistic logic and topoi".
2010s Milly Maietti, Steve Vickers. Ongoing work on arithmetic universes.
2011 Joel David Hamkins. "The set-theoretic multiverse".
2013 Shawn Henry. "Classifying topoi and preservation of higher order logic by geometric morphisms".

\checkmark There are type-theoretic multiverses, such as

■ the collection of all $\operatorname{PSh}(\mathcal{C} \times \mathcal{B})$, where \mathcal{B} ranges over cube categories and \mathcal{C} over arbitrary small categories, and their corresponding sheaf models
Coquand. "A survey of constructive presheaf models of univalence". ACM SIGLOG News, 5.3 (2018).
\checkmark There are type-theoretic multiverses, such as
■ the collection of all $\operatorname{PSh}(\mathcal{C} \times \mathcal{B})$, where \mathcal{B} ranges over cube categories and \mathcal{C} over arbitrary small categories, and their corresponding sheaf models Coquand. "A survey of constructive presheaf models of univalence". ACM SIGLOG News, 5.3 (2018).
X Accessing the multiverse from within type theory is tricky:
■ Given a model of $\mathfrak{s C I C}$ and a category \mathcal{C} in it, we have a syntactic presheaf model of CIC. Coquand, Jaber. "A note on forcing and type theory". Fundamenta Informaticae 100 (2010). Jaber, Lewertowski, Pédrot, Sozeau, Tabareau. "The definitional side of the forcing". Proceedings of LICS '16 (2016). Pédrot. "Russian constructivism in a prefascist theory". Proceedings of LICS '20 (2020).
■ Given a suitable lex modality, we have a syntactic sheaf model (model of modal types). Coquand, Ruch, Sattler. "Constructive sheaf models of type theory"" Math. Struct. Comput. Sci. 31.9 (2021). Escardó, Xu. "Sheaf models of type theory in type theory". Unpublished (2016). Quirin. "Lawvere-Tierney sheafification in Homotopy Type Theory". PhD thesis (2016).

- (I believe) we have syntactic sheaf models in certain special cases, when no coherence issues arise in defining the notion of presheaves.

Still, can pragmatically use ∇ and feel philosophically inspired.

