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How should this notion be formalized in HoTT?

7, 4, 3, . . .

1, 8,

2,

≤

Thm. Every sequence α : N → N is good in that there exist i < j with α i ≤ α j.
Proof. (offensive?) By lem , there is a minimum α i. Set j := i + 1.
Def. (classically) A quasiorder X is well iff every sequence N → X is good.
Examples. (classically) (N,≤), X × Y , X∗, Tree(X).

A naive formalization attempt:

Def. Well∞(X ,≤) :=
∏

α :N→X

∥∥∥∑
i :N

∑
j :N

i < j × α i ≤ α j
∥∥∥
−1

�

✗ philosophically strenuous
✗ not practical
✗ not faithful(?)
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Sequences provided by lem

Lemma. Let X be a well quasiorder. Let α : N → X be a sequence. Assuming lem, there merely
is a monotonic subsequence α i0 ≤ α i1 ≤ · · · .
Proof. The type

I :=
∑
i :N

¬
∑
j :N

i < j × α i ≤ α j

cannot be in bijection with N, as else the I -extracted subsequence of α would not be good.
By lem, the type I is finite. Any index i0 larger than all the indices in I is a suitable starting
point for a monotonic subsequence.

Prop. Let X and Y be well quasiorders. Assuming lem, X × Y is well.
Proof. Let an infinite sequence γ : N → X × Y be given. Write γ k = (α k, β k). By the lemma,
there is a monotonic subsequence α i0 ≤ α i1 ≤ · · · . Because Y is well, there are indices n < m
such that β in ≤ β im. As also α in ≤ α im, the sequence γ is good.

� We cannot trust lem-provided sequences to be available in the type N → X.
Similarly with dc.
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Sequences depending on an environment

Let X be an hset such that there is no surjection N↠ X . Then the type N → X misses the
generic enumeration pα of X .

Idea: Approximate (fictitious) surjections N↠ X by finite sequences σ = x0 . . . xn−1 :X∗.
Starting with the empty sequence ε, over time, such an approximation can grow to

1 one of σy, where y :X , so it becomes more defined; or
2 one of στ , where τ :X∗ such that a ∈ στ , so it becomes more surjective.

For k : N and a : X , the expression “ pα k = a” does not denote a proposition but rather a
stage-dependent proposition X∗ → Prop, namely λx0 . . . xn−1. k < n× xk = a.

Given a stage-dependent proposition P ,∇P σ expresses that no matter how σ evolves to a
better approximation τ , eventually P τ will hold:

data∇ (P : X* → Prop) (σ : X*) : Prop where
now : P σ → ∇ P σ
later1 : ((y : X) → ∇ P (σy)) → ∇ P σ
later2 : (a : X) → ((τ : X*) → a ∈ στ → ∇ P (στ )) → ∇ P σ

For instance, for Pa σ := (a ∈ σ), we have∇Pa ε. “ pα is surjective”: (a : X) → ∇ Pa ε

3 / 10
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Well quasiorders revisited

A naive formalization attempt:

Def. Well∞(X ,≤) :=
∏

α :N→X

∥∥∥∑
i :N

∑
j :N

i < j × α i ≤ α j
∥∥∥
−1

�

An inductive rephrasing:

Def. Well(X ,≤) := ∇Good ε, where Good x0 . . . xn−1 := ∃
i:N

∃
j:N
(i < j × xi ≤ xj) and

data∇ (P : X* → Prop) (σ : X*) : Prop where
now : P σ → ∇ P σ
later : ((y : X) → ∇ P (σy)) → ∇ P σ

In other words: A quasiorder X is well iff the generic sequence N → X is good.

Prop. Let X and Y be well quasiorders. Without assuming lem, X × Y is well.

� We have Well(X ,≤) → Well∞(X ,≤), but the converse only holds in presence
of bar induction. How much stronger exactly is the inductive rephrasing?
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Topos for reifying generic models

Grothendieck toposes (= categories of sheaves over sites) are mathematical universes:

The generic sequence is an honest function N → X in a certain topos E .
The generic surjection is an honest surjection in an appropriate subtopos of E .
In the double-negation subtopos of the base, a predicate Q : N → Prop such that

Q x × Q y −→ x = y and ¬¬
∑
n :N

Q n

looks like an ordinary natural number.

A statement holds in a topos iff a certain topos-directed translation holds in the base. For
instance, for the double-negation subtopos the translation substitutes

∃ ⇝ ∃cl, where ∃cl :≡ ¬¬∃,
∨ ⇝ ∨cl, where α ∨cl β :≡ ¬¬(α ∨ β),
= ⇝ =cl, where s =cl t :≡ ¬¬(s = t).

In general, stage-dependent∇ instead of ¬¬.
5 / 10



Maximal ideals as convenient fictions

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A.
Then 1 = 0 in A.

Proof. (classical) Assume not. Then there is a maximal ideal m. The matrix is surjective
over A/m. Since A/m is a field, this is a contradiction to basic linear algebra.
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(0) = {0}

(1) = Z

(2) (3)

(4) (6)

(5) (7) . . .

maximal among the proper ideals

• ¬(1 ∈ m)

• ¬
(
1 ∈ m+ (x)

)
⇒ x ∈ m

(8) . . .
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Does there exist a maximal ideal?

Yes, if A is countable. In the general case: No, but yes in a
suitable topos, and bounded first-order consequences of its existence there pass down to the base.
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Maximal ideals as convenient fictions

Thm. Let M be a surjective matrix with more rows than columns over a commutative ring A.
Then 1 = 0 in A.

Proof. (constructive, special case) Write M = ( xy ). By surjectivity, we have u, v :A with

u ( xy ) = ( 10 ) and v ( xy ) = ( 01 ) .

Hence 1 = (vy)(ux) = (uy)(vx) = 0.

6 / 10



A brief timeline

1878 · · · · · ·• Cantor advances the continuum hypothesis, the claim
that 2ℵ0 = ℵ1.

1910s · · · · · ·• Zermelo–Fraenkel set theory emerges.

1920s · · · · · ·• Set theorists pursue additional axioms to settle ch
(one way or another).

1938 · · · · · ·• Gödel proves: If zfc is consistent, so is zfc+ch.

1963 · · · · · ·• Cohen proves: If zfc is consistent, so is zfc+¬ch.

2011 · · · · · ·• Hamkins offers his paper on themultiverse position in
the philosophy of set theory.

2016 · · · · · ·• Oldenziel proposes to study the modal multiverse of toposes.

Judith Roitman

Mainstream mathematics
is beginning to see results
using modern set theoretic

techniques.
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The modal set-theoretic multiverse

Def. A model of set theory is a (perhaps class-sized) structure (M,∈) satisfying axioms such
as those of zfc.
Examples.

V , the class of all sets
L, Gödel’s constructible universe
V [G], a forcing extension containing a generic filter G of
some poset of forcing conditions
Henkin/term models from consistency of (extensions of) zfc

We embrace all models of set theory:

Def. φ iff φ holds in some extension of the current universe.
φ iff φ holds in all extensions of the current universe.

( CH ∧ ¬CH), the continuum hypothesis is a switch.
(X is countable), existence of an enumeration is a button.
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The modal topos-theoretic multiverse

Def. A statement φ holds . . .
1 everywhere ( φ) iff it holds in every topos (over the current base).
2 somewhere ( φ) iff it holds in some positive topos.
3 proximally ( φ) iff it holds in some positive overt topos.

Traveling the multiverse:

For every inhabited set X , proximally there is an enumeration N↠ X .
A quasiorder is well iff everywhere, every sequence is good.
A ring element is nilpotent iff all prime ideals everywhere contain it.
For every ring, proximally there is a maximal ideal.
A relation is well-founded iff everywhere, there is no descending chain.
Somewhere, the law of excluded middle holds.

Prop. Let (X ,≤) be a well quasiorder. Then (<), where x < y ≡ (x ≤ y ∧ ¬(y ≤ x)), is well-founded.

Proof. Everywhere, there can be no infinite descending chain, as any such would also be good.
Unrolling this proof gives a program ∇Good ε →

∏
x:X Acc x.

Foreshadowed by:

1984 André Joyal, Miles Tierney. “An extension of the Galois theory of Grothendieck”.
1987 Andreas Blass. “Well-ordering and induction in intuitionistic logic and topoi”.
2010s Milly Maietti, Steve Vickers. Ongoing work on arithmetic universes.
2011 Joel David Hamkins. “The set-theoretic multiverse”.
2013 Shawn Henry. “Classifying topoi and preservation of higher order logic by geometric morphisms”.
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Towards the modal type-theoretic multiverse

✓ There are type-theoretic multiverses, such as

the collection of all PSh(C × B), where B ranges over cube categories and C over arbitrary small
categories, and their corresponding sheaf models
Coquand. “A survey of constructive presheaf models of univalence”. ACM SIGLOG News, 5.3 (2018).

✗ Accessing the multiverse from within type theory is tricky:

Given a model of sCIC and a category C in it, we have a syntactic presheaf model of CIC.
Coquand, Jaber. “A note on forcing and type theory”. Fundamenta Informaticae 100 (2010).
Jaber, Lewertowski, Pédrot, Sozeau, Tabareau. “The definitional side of the forcing”. Proceedings of LICS ’16 (2016).
Pédrot. “Russian constructivism in a prefascist theory”. Proceedings of LICS ’20 (2020).

Given a suitable lex modality, we have a syntactic sheaf model (model of modal types).
Coquand, Ruch, Sattler. “Constructive sheaf models of type theory.” Math. Struct. Comput. Sci. 31.9 (2021).
Escardó, Xu. “Sheaf models of type theory in type theory”. Unpublished (2016).
Quirin. “Lawvere–Tierney sheafification in Homotopy Type Theory”. PhD thesis (2016).

(I believe) we have syntactic sheaf models in certain special cases, when no coherence issues arise
in defining the notion of presheaves.

Still, can pragmatically use∇ and feel philosophically inspired.
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