- an invitation 🚽

Towards multiversal modal operators for homotopy type theory

244.00

7, 4,
$$(3, 1, 8, 2, \dots)$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha i \leq \alpha j$.

7, 4,
$$(3, 1, 8, 2, \dots)$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha i \leq \alpha j$.

Proof. (offensive?) By LEM, there is a minimum α *i*. Set j := i + 1.

7, 4, 3, 1, 8, 2, ...
$$\leq$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha i \le \alpha j$. *Proof. (offensive?)* By **LEM**, there is a minimum αi . Set j := i + 1. **Def.** (classically) A quasiorder X is **well** iff every sequence $\mathbb{N} \to X$ is good. **Examples.** (classically) (\mathbb{N}, \le) , $X \times Y$, X^* , Tree(X).

7, 4, 3, 1, 8, 2, ...
$$\leq$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha i \leq \alpha j$. *Proof. (offensive?)* By **LEM**, there is a minimum αi . Set j := i + 1. **Def.** (classically) A quasiorder X is **well** iff every sequence $\mathbb{N} \to X$ is good. **Examples.** (classically) (\mathbb{N}, \leq) , $X \times Y$, X^* , Tree(X).

A naive formalization attempt:

Def. Well_{$$\infty$$}(X, \leq) := $\prod_{\alpha : \mathbb{N} \to X} \left\| \sum_{i : \mathbb{N}} \sum_{j : \mathbb{N}} i < j \times \alpha i \leq \alpha j \right\|_{-1}$

7, 4, 3, 1, 8, 2, ...
$$\leq$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha i \leq \alpha j$. *Proof. (offensive?)* By **LEM**, there is a minimum αi . Set j := i + 1. **Def.** (classically) A quasiorder X is well iff every sequence $\mathbb{N} \to X$ is good. **Examples.** (classically) (\mathbb{N}, \leq) , $X \times Y$, X^* , Tree(X).

A naive formalization attempt:

Def. Well_∞(*X*, ≤) :=
$$\prod_{\alpha : \mathbb{N} \to X} \left\| \sum_{i : \mathbb{N}} \sum_{j : \mathbb{N}} i < j \times \alpha i \le \alpha j \right\|_{-1}$$

X philosophically strenuous

- ✗ not practical
- ✗ not faithful(?)

Sequences provided by LEM

Lemma. Let *X* be a well quasiorder. Let $\alpha : \mathbb{N} \to X$ be a sequence. Assuming LEM, there merely is a monotonic subsequence $\alpha i_0 \leq \alpha i_1 \leq \cdots$.

Proof. The type

$$I := \sum_{i \, : \, \mathbb{N}} \neg \sum_{j \, : \, \mathbb{N}} i < j \times \alpha \, i \leq \alpha j$$

cannot be in bijection with \mathbb{N} , as else the *I*-extracted subsequence of α would not be good. By LEM, the type *I* is finite. Any index i_0 larger than all the indices in *I* is a suitable starting point for a monotonic subsequence.

Sequences provided by LEM

Lemma. Let *X* be a well quasiorder. Let $\alpha : \mathbb{N} \to X$ be a sequence. Assuming LEM, there merely is a monotonic subsequence $\alpha i_0 \leq \alpha i_1 \leq \cdots$.

Proof. The type

$$I := \sum_{i \, : \, \mathbb{N}} \neg \sum_{j \, : \, \mathbb{N}} i < j \times \alpha \, i \leq \alpha j$$

cannot be in bijection with \mathbb{N} , as else the *I*-extracted subsequence of α would not be good. By LEM, the type *I* is finite. Any index i_0 larger than all the indices in *I* is a suitable starting point for a monotonic subsequence.

Prop. Let *X* and *Y* be well quasiorders. Assuming LEM, $X \times Y$ is well.

Proof. Let an infinite sequence $\gamma : \mathbb{N} \to X \times Y$ be given. Write $\gamma k = (\alpha k, \beta k)$. By the lemma, there is a monotonic subsequence $\alpha i_0 \leq \alpha i_1 \leq \cdots$. Because Y is well, there are indices n < m such that $\beta i_n \leq \beta i_m$. As also $\alpha i_n \leq \alpha i_m$, the sequence γ is good.

Sequences provided by LEM

Lemma. Let *X* be a well quasiorder. Let $\alpha : \mathbb{N} \to X$ be a sequence. Assuming LEM, there merely is a monotonic subsequence $\alpha i_0 \leq \alpha i_1 \leq \cdots$.

Proof. The type

$$I := \sum_{i \, : \, \mathbb{N}} \neg \sum_{j \, : \, \mathbb{N}} i < j \times \alpha \, i \leq \alpha j$$

cannot be in bijection with \mathbb{N} , as else the *I*-extracted subsequence of α would not be good. By LEM, the type *I* is finite. Any index i_0 larger than all the indices in *I* is a suitable starting point for a monotonic subsequence.

Prop. Let *X* and *Y* be well quasiorders. Assuming LEM, $X \times Y$ is well.

Proof. Let an infinite sequence $\gamma : \mathbb{N} \to X \times Y$ be given. Write $\gamma k = (\alpha k, \beta k)$. By the lemma, there is a monotonic subsequence $\alpha i_0 \leq \alpha i_1 \leq \cdots$. Because Y is well, there are indices n < m such that $\beta i_n \leq \beta i_m$. As also $\alpha i_n \leq \alpha i_m$, the sequence γ is good.

We cannot trust LEM-provided sequences to be available in the type $\mathbb{N} \to X$. Similarly with DC.

Let *X* be an hset such that there is no surjection $\mathbb{N} \twoheadrightarrow X$. Then the type $\mathbb{N} \to X$ misses the **generic enumeration** α of *X*.

Let *X* be an hset such that there is no surjection $\mathbb{N} \twoheadrightarrow X$. Then the type $\mathbb{N} \to X$ misses the **generic enumeration** α of *X*.

Idea: Approximate (fictitious) surjections $\mathbb{N} \to X$ by finite sequences $\sigma = x_0 \dots x_{n-1} : X^*$. Starting with the empty sequence ε , over time, such an approximation can grow to

- **1** one of σy , where y : X, so it becomes *more defined*; or
- **2** one of $\sigma\tau$, where $\tau: X^*$ such that $a \in \sigma\tau$, so it becomes *more surjective*.

Let *X* be an hset such that there is no surjection $\mathbb{N} \twoheadrightarrow X$. Then the type $\mathbb{N} \to X$ misses the **generic enumeration** α of *X*.

Idea: Approximate (fictitious) surjections $\mathbb{N} \to X$ by finite sequences $\sigma = x_0 \dots x_{n-1} : X^*$. Starting with the empty sequence ε , over time, such an approximation can grow to

1 one of σy , where y: X, so it becomes *more defined*; or 2 one of $\sigma \tau$, where $\tau: X^*$ such that $a \in \sigma \tau$, so it becomes *more surjective*.

For $k : \mathbb{N}$ and a : X, the expression " $\alpha k = a$ " does not denote a proposition but rather a **stage-dependent proposition** $X^* \to \text{Prop, namely } \lambda x_0 \dots x_{n-1}$. $k < n \times x_k = a$.

Let *X* be an hset such that there is no surjection $\mathbb{N} \to X$. Then the type $\mathbb{N} \to X$ misses the **generic enumeration** α of *X*.

Idea: Approximate (fictitious) surjections $\mathbb{N} \to X$ by finite sequences $\sigma = x_0 \dots x_{n-1} : X^*$. Starting with the empty sequence ε , over time, such an approximation can grow to

1 one of σy , where y: X, so it becomes *more defined*; or 2 one of $\sigma \tau$, where $\tau: X^*$ such that $a \in \sigma \tau$, so it becomes *more surjective*.

For $k : \mathbb{N}$ and a : X, the expression " $\alpha k = a$ " does not denote a proposition but rather a **stage-dependent proposition** $X^* \to \text{Prop, namely } \lambda x_0 \dots x_{n-1}$. $k < n \times x_k = a$.

Given a stage-dependent proposition P, $\nabla P \sigma$ expresses that no matter how σ evolves to a better approximation τ , eventually $P \tau$ will hold:

data ∇ ($P : X^* \to Prop$) ($\sigma : X^*$) : Prop where now : $P \sigma \to \nabla P \sigma$ later₁ : ((y : X) $\to \nabla P (\sigma y)$) $\to \nabla P \sigma$ later₂ : (a : X) $\to ((\tau : X^*) \to a \in \sigma\tau \to \nabla P (\sigma\tau)) \to \nabla P \sigma$ For instance, for $P_a \sigma := (a \in \sigma)$, we have $\nabla P_a \varepsilon$. " α is surjective": (a : X) $\to \nabla P_a \varepsilon$

Well quasiorders revisited

A naive formalization attempt:

Def. Well_{$$\infty$$}(X, \leq) := $\prod_{\alpha : \mathbb{N} \to X} \left\| \sum_{i : \mathbb{N}} \sum_{j : \mathbb{N}} i < j \times \alpha i \leq \alpha j \right\|_{-1}$

Well quasiorders revisited

A naive formalization attempt:

$$\mathbf{Def.} \ \mathbf{Well}_{\infty}(X, \leq) := \prod_{\alpha : \mathbb{N} \to X} \left\| \sum_{i : \mathbb{N}} \sum_{j : \mathbb{N}} i < j \times \alpha \ i \leq \alpha j \right\|_{-1} \qquad \textcircled{2}$$

An inductive rephrasing:

Def. Well $(X, \leq) := \nabla$ Good ε , where Good $x_0 \dots x_{n-1} := \exists \exists i: \mathbb{N} i: \mathbb{N} (i < j \times x_i \leq x_j)$ and

data ∇ ($P : X^* \rightarrow Prop$) ($\sigma : X^*$) : Prop where now : $P \sigma \rightarrow \nabla P \sigma$ later : ((y : X) $\rightarrow \nabla P (\sigma y)$) $\rightarrow \nabla P \sigma$

In other words: A quasiorder X is well iff the generic sequence $\mathbb{N} \to X$ is good.

Prop. Let X and Y be well quasiorders. Without assuming LEM, $X \times Y$ is well.

Well quasiorders revisited

A naive formalization attempt:

$$\mathbf{Def.} \ \mathbf{Well}_{\infty}(X, \leq) := \prod_{\alpha : \mathbb{N} \to X} \left\| \sum_{i : \mathbb{N}} \sum_{j : \mathbb{N}} i < j \times \alpha \ i \leq \alpha j \right\|_{-1} \qquad \textcircled{2}$$

An inductive rephrasing:

Def. Well $(X, \leq) := \nabla$ Good ε , where Good $x_0 \dots x_{n-1} := \exists \exists (i < j \times x_i \leq x_j)$ and

data ∇ ($P : X^* \rightarrow Prop$) ($\sigma : X^*$) : Prop where now : $P \sigma \rightarrow \nabla P \sigma$ later : ((y : X) $\rightarrow \nabla P (\sigma y)$) $\rightarrow \nabla P \sigma$

In other words: A quasiorder X is well iff the generic sequence $\mathbb{N} \to X$ is good.

Prop. Let X and Y be well quasiorders. Without assuming LEM, $X \times Y$ is well.

We have $Well(X, \leq) \to Well_{\infty}(X, \leq)$, but the converse only holds in presence of **bar induction**. *How much stronger exactly is the inductive rephrasing?*

Topos for reifying generic models

Grothendieck toposes (= categories of sheaves over sites) are mathematical universes:

- The generic sequence is an honest function $\mathbb{N} \to X$ in a certain topos \mathcal{E} .
- The generic surjection is an honest surjection in an appropriate subtopos of \mathcal{E} .
- In the *double-negation subtopos* of the base, a predicate $Q: \mathbb{N} \to \mathsf{Prop}$ such that

$$Q x \times Q y \longrightarrow x = y \text{ and } \neg \neg \sum_{n : \mathbb{N}} Q n$$

looks like an ordinary natural number.

A statement holds in a topos iff a certain topos-directed translation holds in the base. For instance, for the double-negation subtopos the translation substitutes

In general, stage-dependent ∇ instead of $\neg \neg$.

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Proof. (classical) Assume not.

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m} .

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Proof. (classical) Assume not. Then there is a maximal ideal m.

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} .

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Does there exist a maximal ideal?

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Does there exist a maximal ideal? Yes, if A is countable. In the general case: No

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Proof. (classical) Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Does there exist a maximal ideal? Yes, if A is countable. In the general case: No, but yes in a suitable topos, and bounded first-order consequences of its existence there pass down to the base.

Thm. Let *M* be a surjective matrix with more rows than columns over a commutative ring *A*. Then 1 = 0 in *A*.

Proof. (constructive, special case) Write $M = \begin{pmatrix} x \\ y \end{pmatrix}$. By surjectivity, we have u, v : A with

 $u\begin{pmatrix} x\\ y\end{pmatrix} = \begin{pmatrix} 1\\ 0\end{pmatrix}$ and $v\begin{pmatrix} x\\ y\end{pmatrix} = \begin{pmatrix} 0\\ 1\end{pmatrix}$.

Hence 1 = (vy)(ux) = (uy)(vx) = 0.

1878 \cdots Cantor advances the **continuum hypothesis**, the claim that $2^{\aleph_0} = \aleph_1$.

1878 · · · · · • Cantor advances the continuum hypothesis, the claim that $2^{\aleph_0} = \aleph_1$.

1910s · · · · • Zermelo–Fraenkel set theory emerges.

1878 • • • • •	Cantor advances the continuum hypothesis , the claim that $2^{\aleph_0} = \aleph_1$.
1910s · · · · •	 Zermelo–Fraenkel set theory emerges.
1920s · · · · •	Set theorists pursue additional axioms to settle сн (one way or another).
1938	Gödel proves: If zFC is consistent, so is zFC+CH.

1878 • • • • •	Cantor advances the continuum hypothesis , the claim that $2^{\aleph_0} = \aleph_1$.
1910s · · · · •	 Zermelo–Fraenkel set theory emerges.
1920s · · · · •	Set theorists pursue additional axioms to settle сн (one way or another). Gödel proves: If zFc is consistent, so is zFc+сн.
1938 • • • • •	Gödel proves: If zFC is consistent, so is zFC+CH.
	Cohen proves: If zғс is consistent, so is zғс+¬сн.

1878 • • • •	Cantor advances the continuum hypothesis , the claim that $2^{\aleph_0} = \aleph_1$.
1910s · · · · •	Zermelo-Fraenkel set theory emerges.
1920s · · · · •	Set theorists pursue additional axioms to settle сн (one way or another).
1938 · · · · •	Gödel proves: If zFc is consistent, so is zFC+CH.
1963 · · · · •	Cohen proves: If zFc is consistent, so is zFC+ \neg CH.
2011 · · · · •	Hamkins offers his paper on the multiverse position in the philosophy of set theory.

1878 • • • •	Cantor advances the continuum hypothesis , the claim that $2^{\aleph_0} = \aleph_1$.
1910s · · · · •	Zermelo-Fraenkel set theory emerges.
1920s · · · · •	Set theorists pursue additional axioms to settle сн (one way or another).
1938 • • • • •	Gödel proves: If zFc is consistent, so is zFC+CH.
1963 · · · · •	Cohen proves: If zFC is consistent, so is zFC+ \neg CH.
2011 · · · · •	Hamkins offers his paper on the multiverse position in the philosophy of set theory.
2016 · · · · •	Oldenziel proposes to study the modal multiverse of toposes.

1878 • • • •	Cantor advances the continuum hypothesis , the claim that $2^{\aleph_0} = \aleph_1$.
1910s · · · · •	Zermelo-Fraenkel set theory emerges.
1920s · · · · •	Set theorists pursue additional axioms to settle сн (one way or another).
1938 · · · · •	Gödel proves: If zFc is consistent, so is zFC+CH.
1963 · · · · •	Cohen proves: If zFC is consistent, so is zFC+¬CH.
2011 · · · · •	Hamkins offers his paper on the multiverse position in the philosophy of set theory.
2016 · · · · •	Oldenziel proposes to study the modal multiverse of toposes.

Judith Roitman

Mainstream mathematics is beginning to see results using modern set theoretic techniques.

Def. A model of set theory is a (perhaps class-sized) structure (M, \in) satisfying axioms such as those of zFC.

Examples.

- *V*, the class of all sets
- L, Gödel's constructible universe
- V[G], a forcing extension containing a generic filter G of some poset of forcing conditions
- Henkin/term models from consistency of (extensions of) zFC

Def. A model of set theory is a (perhaps class-sized) structure (M, \in) satisfying axioms such as those of zFC.

Examples.

- *V*, the class of all sets
- L, Gödel's constructible universe
- V[G], a forcing extension containing a generic filter G of some poset of forcing conditions
- Henkin/term models from consistency of (extensions of) zFC

We embrace all models of set theory:

- **Def.** $\Diamond \varphi$ iff φ holds in **some extension** of the current universe. $\Box \varphi$ iff φ holds in **all extensions** of the current universe.
 - $\Box(\diamondsuit CH \land \diamondsuit \neg CH)$, the continuum hypothesis is a switch.
 - $\Box \Diamond \Box (X \text{ is countable})$, existence of an enumeration is a **button**.

Def. A statement φ holds . . .

- **1** everywhere $(\Box \varphi)$ iff it holds in every topos (over the current base).
- **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
- **3 proximally** ($\otimes \varphi$) iff it holds in some positive overt topos.

Def. A statement φ holds ...

- **1** everywhere $(\Box \varphi)$ iff it holds in every topos (over the current base).
- **2** somewhere ($\Diamond \varphi$) iff it holds in some positive topos.
- **3 proximally** ($\otimes \varphi$) iff it holds in some positive overt topos.

Traveling the multiverse:

- For every inhabited set *X*, *proximally* there is an enumeration $\mathbb{N} \twoheadrightarrow X$.
- A quasiorder is well iff *everywhere*, every sequence is good.
- A ring element is nilpotent iff all prime ideals *everywhere* contain it.
- For every ring, *proximally* there is a maximal ideal.
- A relation is well-founded iff *everywhere*, there is no descending chain.
- Somewhere, the law of excluded middle holds.

Def. A statement φ holds \ldots

- **1** everywhere $(\Box \varphi)$ iff it holds in every topos (over the current base).
- **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
- **3 proximally** ($\otimes \varphi$) iff it holds in some positive overt topos.

Traveling the multiverse:

- For every inhabited set *X*, *proximally* there is an enumeration $\mathbb{N} \twoheadrightarrow X$.
- A quasiorder is well iff *everywhere*, every sequence is good.
- A ring element is nilpotent iff all prime ideals *everywhere* contain it.
- For every ring, *proximally* there is a maximal ideal.
- A relation is well-founded iff *everywhere*, there is no descending chain.
- Somewhere, the law of excluded middle holds.

Prop. Let (X, \leq) be a well quasiorder. Then (<), where $x < y \equiv (x \leq y \land \neg(y \leq x))$, is well-founded.

Proof. Everywhere, there can be no infinite descending chain, as any such would also be good. Unrolling this proof gives a program $\nabla \text{Good } \varepsilon \to \prod_{x:X} \text{Acc } x$.

Def. A statement φ holds ...

- **1** everywhere $(\Box \varphi)$ iff it holds in every topos (over the current base).
- **2** somewhere $(\diamondsuit \varphi)$ iff it holds in some positive topos.
- **3 proximally** ($\otimes \varphi$) iff it holds in some positive overt topos.

Traveling the multiverse:

- For every inhabited set *X*, *proximally* there is an enumeration $\mathbb{N} \twoheadrightarrow X$.
- A quasiorder is well iff *everywhere*, every sequence is good.
- A ring element is nilpotent iff all prime ideals *everywhere* contain it.
- For every ring, *proximally* there is a maximal ideal.
- A relation is well-founded iff *everywhere*, there is no descending chain.
- Somewhere, the law of excluded middle holds.

Foreshadowed by:

- 1984 André Joyal, Miles Tierney. "An extension of the Galois theory of Grothendieck".
- 1987 Andreas Blass. "Well-ordering and induction in intuitionistic logic and topoi".
- 2010s Milly Maietti, Steve Vickers. Ongoing work on arithmetic universes.
- 2011 Joel David Hamkins. "The set-theoretic multiverse".
- 2013 Shawn Henry. "Classifying topoi and preservation of higher order logic by geometric morphisms".

Towards the modal type-theoretic multiverse

- ✓ *There are type-theoretic multiverses*, such as
 - the collection of all PSh(C × B), where B ranges over cube categories and C over arbitrary small categories, and their corresponding sheaf models Coquand. "A survey of constructive presheaf models of univalence". *ACM SIGLOG News*, 5.3 (2018).

Towards the modal type-theoretic multiverse

- ✓ There are type-theoretic multiverses, such as
 - the collection of all PSh(C × B), where B ranges over cube categories and C over arbitrary small categories, and their corresponding sheaf models Coquand. "A survey of constructive presheaf models of univalence". *ACM SIGLOG News*, 5.3 (2018).

X Accessing the multiverse from within type theory is tricky:

- Given a model of \$CIC and a category C in it, we have a syntactic presheaf model of CIC. Coquand, Jaber. "A note on forcing and type theory". *Fundamenta Informaticae 100* (2010). Jaber, Lewertowski, Pédrot, Sozeau, Tabareau. "The definitional side of the forcing". *Proceedings of LICS '16* (2016). Pédrot. "Russian constructivism in a prefascist theory". *Proceedings of LICS '20* (2020).
- Given a suitable lex modality, we have a syntactic sheaf model (model of modal types).
 Coquand, Ruch, Sattler. "Constructive sheaf models of type theory." *Math. Struct. Comput. Sci.* 31.9 (2021).
 Escardó, Xu. "Sheaf models of type theory in type theory". Unpublished (2016).
 Quirin. "Lawvere-Tierney sheafification in Homotopy Type Theory". PhD thesis (2016).
- (I believe) we have syntactic sheaf models in certain special cases, when no coherence issues arise in defining the notion of presheaves.

Still, can pragmatically use ∇ and feel philosophically inspired.