
Let a continuous family of symmetric matrices be given:a11(t) · · · a1n(t)
.
.
.

.

.

.

an1(t) · · · ann(t)


There for every parameter value t, classically there is

▶ a full list of eigenvalues λ1(t), . . . , λn(t) and
▶ an eigenvector basis (v1(t), . . . , vn(t)).

Can locally the functions λi be chosen to be continuous?

How about the vi?
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Questions

1 Why has the inductive revolution been so powerful?

2 Why do proofs using Zorn’s maximal ideals work so well in constructive algebra?

3 Why are elements of

⋂
p p not necessarily nilpotent?

4 How can we extract computational content from classical proofs?

1 / 8



Infinite data

7, 4, 3, . . .

1, 8,

2,

≤

Thm. Every sequence α : N → N is good in that there exist i < j with α(i) ≤ α(j).

Proof. (offensive?) By lem , there is a minimum α(i). Set j := i + 1.

Def. A preorder X is well iff every sequence N → X is good.

Examples. (N,≤), X × Y , X∗, Tree(X)︸ ︷︷ ︸

only classically

. � Don’t quantify over points of spaces
which might not have enough.

Def. For a predicate P on finite lists over a set X , inductively define:

Pσ
P |σ

∀(x ∈ X). P |σx
P |σ

Def. A preorder is well iff Good | [ ], where Goodσ :≡ (∃(i < j). σ[i] ≤ σ[j]).
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Computational content from classical proofs
Def. A transitive relation (<) on a set X is . . .

1 well-founded⋆
iff there is no infinite chain x0 > x1 > · · · ,

2 well-founded iff for every x ∈ X , Acc(x),

where Acc is inductively defined by:

∀(y < x). Acc(y)
Acc(x)

Prop. Let (X ,≤) be preorder. Let “x < y” mean x ≤ y ∧ ¬(y ≤ x).
Then: If X is well

⋆
, then (<) is well-founded⋆.

Proof. An infinite strictly descending chain would also be good.

Can we extract a constructive proof that well preorders are well-founded?
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Maximal ideals
Thm. Let M be a surjective matrix with more rows than columns over a ring A.
Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal m. The matrix is surjective over A/m.

Since A/m is a field, this is a contradiction to basic linear algebra.

Let A be a ring. Does there exist a maximal ideal m ⊆ A?

1 Yes, if Zorn’s lemma is available.

2 Yes, if A is countable and membership of finitely generated ideals is decidable:

m0
:= {0}, mn+1

:=

{
mn + (xn), if 1 ̸∈ mn + (xn),
mn, else.

3 Yes, if A is countable (irrespective of membership decidability):

m0
:= {0}, mn+1

:= mn + ({x ∈ A | x = xn ∧ 1 ̸∈ mn + (xn)}︸ ︷︷ ︸
a certain subsingleton set

)

“a bad joke”
“non-

informative”

4 In the general case: No,

but first-order consequences of the existence of a maximal ideal do hold.
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Constructive forcing (= Grothendieck toposes)
Let L be a forcing notion, a preorder equipped with a covering system.

1 Filters F ⊆ L
are subsets which are upward-closed, downward-directed and split the covering system.

2

preorder L coverings of an element σ ∈ L filters of L

1 X∗ {σx | x ∈ X} maps N → X
2 X∗ {σx | x ∈ X}, {στ | τ ∈ X∗, a ∈ στ} for each a ∈ X surjections N ↠ X
3 f.g. ideals — ideals

4 f.g. ideals {σ + (a), σ + (b)} for each ab ∈ σ, {} if 1 ∈ σ prime ideals

5 opens U such that σ =
⋃
U points

6 {⋆} {⋆ |φ} ∪ {⋆ | ¬φ} witnesses of lem

1
A covering system consists of a set Cov(σ) ⊆ P(↓σ) of coverings for each element σ ∈ L subject only to the following

simulation condition: If τ ≼ σ and R ∈ Cov(σ), there should be a covering S ∈ Cov(τ) such that S ⊆ ↓R.
2
A subset F splits the covering system iff for every σ ∈ L and R ∈ Cov(σ), if σ ∈ F , then τ ∈ F for some τ ∈ R.
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4 f.g. ideals {σ + (a), σ + (b)} for each ab ∈ σ, {} if 1 ∈ σ prime ideals

5 opens U such that σ =
⋃
U points

6 {⋆} {⋆ |φ} ∪ {⋆ | ¬φ} witnesses of lem

Def. Given a monotone predicate P on L, inductively define:

Pσ
P |σ

∀(τ ∈ R). P | τ
P |σ (R ∈ Cov(σ))

We use quantifier-like notation: “∇σ. Pσ” means P |σ.
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Constructive forcing (= Grothendieck toposes)
A forcing notion is a template for a forcing extension V∇

of the base universe V :

When we say that a statement holds in V∇,
we mean that its∇-translation is true.

Examples.

1 For L = {⋆}, “every number is zero or a successor” holds in V∇
because

∀(n ∈ N).¬¬
(
¬¬(n = 0) ∨ ¬¬(∃(m ∈ N).¬¬(n = S(m)))

)
.

2 For L associated to a space, “every symmetric matrix has an eigenvector” holds

in V∇
iff for every continuous family of symmetric matrices, locally there is a

continuous eigenvector-picking function.

3 For any L, “there is a filter of L” holds in V∇
, witnessed by the generic filter of L.

4 Let X be a preorder. Then:

▶ X is well iff the generic sequence N → X is good.

▶ (<) is well-founded iff the generic strictly descending chain validates ⊥.
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The modal multiverse
In general, “φ holds in V∇

” and “φ holds in V ” are not equivalent.

▶ For positive extensions, they are equivalent for coherent implications.

– e.g. the “Barr cover”.

▶ For positive overt extensions, they are equivalent for bounded first-order formulas.

– e.g. V∇
containing the generic surjection N ↠ X , if X is inhabited.

Def. A statement φ holds . . .

▶ everywhere ( φ) iff it holds in every extension.

▶ somewhere ( φ) iff it holds in some positive extension.

▶ proximally ( φ) iff it holds in some positive overt extension.

For every inhabited set X , proximally
there is an enumeration N ↠ X .

A preorder is well iff everywhere,
every sequence is good.

A ring element is nilpotent iff

all prime ideals everywhere contain it.

For every ring, proximally
there is a maximal ideal.

A relation is well-founded iff everywhere,
there is no descending chain.

Somewhere,
the law of excluded middle holds.
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The multiverse perspective

1 Why has the inductive revolution been so powerful?
Because the inductive conditions are equivalent to truth in all forcing extensions.

2 Why do proofs using Zorn’s maximal ideals work so well in constructive algebra?
Because every ring proximally has a maximal ideal.

3 Why are elements of
⋂

p p not necessarily nilpotent?
Because we forgot the prime ideals in forcing extensions.

4 How can we extract computational content from classical proofs?
By traveling the multiverse (upwards, keeping ties to the base), exploiting that

– lem holds somewhere and
– dc holds proximally.

8 / 8



Partial Agda formalization available.
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