

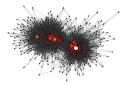
Let a continuous family of symmetric matrices be given:

$$egin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \ dots & & dots \ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix}$$

There for every parameter value t, classically there is

- ▶ a full list of eigenvalues $\lambda_1(t), \ldots, \lambda_n(t)$ and
- ▶ an eigenvector basis $(v_1(t), \ldots, v_n(t))$.

Can locally the functions λ_i be chosen to be continuous? How about the v_i ?



Let a continuous family of symmetric matrices be given:

$$egin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \ dots & & dots \ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix}$$

There for every parameter value t, classically there is

- ▶ a full list of eigenvalues $\lambda_1(t), \ldots, \lambda_n(t)$ and
- ▶ an eigenvector basis $(v_1(t), \ldots, v_n(t))$.

Can locally the functions λ_i be chosen to be continuous? Yes. How about the v_i ? No. an invitation -

New modal operators for constructive mathematics

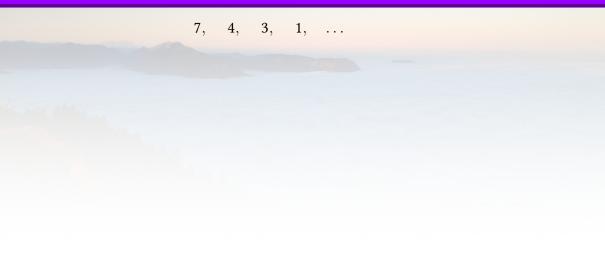
Type Theory, Constructive Mathematics and Geometric Logic

CIRM May 2nd, 2023

Ingo Blechschmidt j.w.w. Alexander Oldenziel

Questions

- Why has the inductive revolution been so powerful?
- 2 Why do proofs using Zorn's maximal ideals work so well in constructive algebra?
- **3** Why are elements of $\bigcap_{\mathfrak{p}} \mathfrak{p}$ not necessarily nilpotent?
- How can we extract computational content from classical proofs?





$$7, 4, 3, 1, 8, 2, \dots$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \leq \alpha(j)$.

$$7, 4, 3, 1, 8, 2, \dots$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$. *Proof. (offensive?)* By **LEM**, there is a minimum $\alpha(i)$. Set j := i + 1.

$$7, 4, 3, 1, 8, 2, \dots$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$. *Proof. (offensive?)* By **LEM**, there is a minimum $\alpha(i)$. Set j := i + 1.

Def. A preorder X is well iff every sequence $\mathbb{N} \to X$ is good. **Examples.** (\mathbb{N}, \leq) , $X \times Y$, X^* , $\operatorname{Tree}(X)$.

$$7, 4, 3, 1, 8, 2, \dots$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$. *Proof. (offensive?)* By **LEM**, there is a minimum $\alpha(i)$. Set j := i + 1. **Def.** A preorder X is well iff every sequence $\mathbb{N} \to X$ is good. **Examples.** (\mathbb{N}, \le) , $X \times Y$, X^* , Tree(X).

$$7, 4, 3, 1, 8, 2, \dots$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$. *Proof. (offensive?)* By **LEM**, there is a minimum $\alpha(i)$. Set j := i + 1.

Def. A preorder *X* is well iff every sequence $\mathbb{N} \to X$ is good.

Examples. $(\mathbb{N}, \leq), X \times Y, X^*, \text{ Tree}(X).$

Don't quantify over points of spaces which might not have enough.

$$7, 4, 3, 1, 8, 2, \dots$$

Thm. Every sequence $\alpha : \mathbb{N} \to \mathbb{N}$ is **good** in that there exist i < j with $\alpha(i) \le \alpha(j)$. *Proof. (offensive?)* By **LEM**, there is a minimum $\alpha(i)$. Set j := i + 1.

Def. A preorder X is well^{*} iff every sequence $\mathbb{N} \to X$ is good.

only classically

Examples. $(\mathbb{N}, \leq), \quad X \times Y, \quad X^*, \quad \text{Tree}(X).$

Don't quantify over points of spaces which might not have enough.

Def. For a predicate *P* on finite lists over a set *X*, inductively define:

$$\frac{P\sigma}{P \mid \sigma} \qquad \frac{\forall (x \in X). \ P \mid \sigma x}{P \mid \sigma}$$

Def. A preorder is well iff Good | [], where Good $\sigma :\equiv (\exists (i < j), \sigma[i] \leq \sigma[j])$.

Computational content from classical proofs

Def. A transitive relation (<) on a set *X* is ...

well-founded^{*} iff there is no infinite chain $x_0 > x_1 > \cdots$,

2 well-founded iff for every $x \in X$, Acc(x),

where Acc is inductively defined by:

 $\frac{\forall (y < x). \ \mathsf{Acc}(y)}{\mathsf{Acc}(x)}$

Computational content from classical proofs

Def. A transitive relation (<) on a set *X* is ...

- **well-founded**^{*} iff there is no infinite chain $x_0 > x_1 > \cdots$,
- **2 well-founded** iff for every $x \in X$, Acc(x),

where Acc is inductively defined by:

$$\frac{\forall (y < x). \ \mathsf{Acc}(y)}{\mathsf{Acc}(x)}$$

Prop. Let (X, \leq) be preorder. Let "x < y" mean $x \leq y \land \neg(y \leq x)$. Then: If X is well^{*}, then (<) is well-founded^{*}.

Proof. An infinite strictly descending chain would also be good.

Computational content from classical proofs

Def. A transitive relation (<) on a set *X* is ...

- **well-founded**^{*} iff there is no infinite chain $x_0 > x_1 > \cdots$,
- **2 well-founded** iff for every $x \in X$, Acc(x),

where Acc is inductively defined by:

$$\frac{\forall (y < x). \ \mathsf{Acc}(y)}{\mathsf{Acc}(x)}$$

Prop. Let (X, \leq) be preorder. Let "x < y" mean $x \leq y \land \neg(y \leq x)$. Then: If X is well^{*}, then (<) is well-founded^{*}.

Proof. An infinite strictly descending chain would also be good.

Can we extract a constructive proof that well preorders are well-founded?

Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

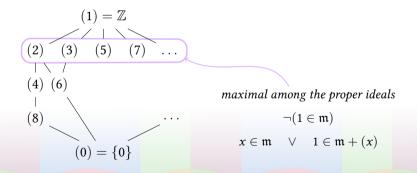
Proof. Assume not.

Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Proof. Assume not. Then there is a maximal ideal m.

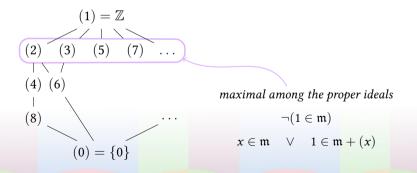
Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Proof. Assume not. Then there is a maximal ideal m.



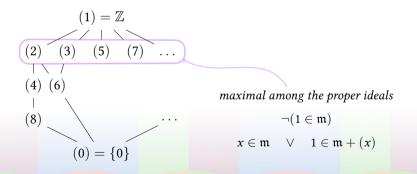
Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} .



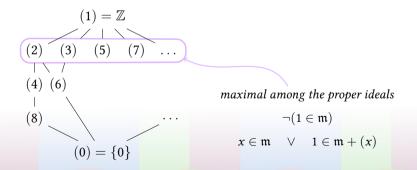
Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.



Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.



Let A be a ring. Does there exist a maximal ideal $\mathfrak{m} \subseteq A$?

Let *A* be a ring. *Does there exist a maximal ideal* $\mathfrak{m} \subseteq A$?

1 Yes, if Zorn's lemma is available.

Let *A* be a ring. *Does there exist a maximal ideal* $\mathfrak{m} \subseteq A$?

- **1** Yes, if Zorn's lemma is available.
- **2** Yes, if *A* is countable and membership of finitely generated ideals is decidable:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := egin{cases} \mathfrak{m}_n + (x_n), & ext{if } 1
ot\in \mathfrak{m}_n + (x_n), \ \mathfrak{m}_n, & ext{else.} \end{cases}$$

Let *A* be a ring. *Does there exist a maximal ideal* $\mathfrak{m} \subseteq A$?

- **1** Yes, if Zorn's lemma is available.
- **2** Yes, if *A* is countable and membership of finitely generated ideals is decidable:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := egin{cases} \mathfrak{m}_n + (x_n), & ext{if } 1
ot\in \mathfrak{m}_n + (x_n), \ \mathfrak{m}_n, & ext{else.} \end{cases}$$

3 Yes, if *A* is countable (irrespective of membership decidability):

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \mathfrak{m}_n + (\underbrace{\{x \in A \mid x = x_n \land 1 \notin \mathfrak{m}_n + (x_n)\}}_{\text{a certain subsingleton set}})$$

Let *A* be a ring. *Does there exist a maximal ideal* $\mathfrak{m} \subseteq A$?

- **1** Yes, if Zorn's lemma is available.
- **2** Yes, if *A* is countable and membership of finitely generated ideals is decidable:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := egin{cases} \mathfrak{m}_n + (x_n), & ext{if } 1
ot\in \mathfrak{m}_n + (x_n), \ \mathfrak{m}_n, & ext{else.} \end{cases}$$

3 Yes, if *A* is countable (irrespective of membership decidability):

$$\mathfrak{m}_{0} := \{0\}, \qquad \mathfrak{m}_{n+1} := \mathfrak{m}_{n} + (\underbrace{\{x \in A \mid x = x_{n} \land 1 \notin \mathfrak{m}_{n} + (x_{n})\}}_{\text{a certain subsingleton set}})$$
a certain subsingleton set "non-informative"

Let *A* be a ring. *Does there exist a maximal ideal* $\mathfrak{m} \subseteq A$?

- **1** Yes, if Zorn's lemma is available.
- **2** Yes, if *A* is countable and membership of finitely generated ideals is decidable:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := egin{cases} \mathfrak{m}_n + (x_n), & ext{if } 1
ot\in \mathfrak{m}_n + (x_n), \ \mathfrak{m}_n, & ext{else.} \end{cases}$$

3 Yes, if *A* is countable (irrespective of membership decidability):

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \mathfrak{m}_n + (\underbrace{\{x \in A \mid x = x_n \land 1 \notin \mathfrak{m}_n + (x_n)\}}_{\text{a certain subsingleton set}})$$

In the general case: No

Let *A* be a ring. *Does there exist a maximal ideal* $\mathfrak{m} \subseteq A$?

- **1** Yes, if Zorn's lemma is available.
- **2** Yes, if *A* is countable and membership of finitely generated ideals is decidable:

$$\mathfrak{m}_0 := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := egin{cases} \mathfrak{m}_n + (x_n), & ext{if } 1
ot\in \mathfrak{m}_n + (x_n), \ \mathfrak{m}_n, & ext{else.} \end{cases}$$

3 Yes, if *A* is countable (irrespective of membership decidability):

$$\mathfrak{m}_{0} := \{0\}, \qquad \qquad \mathfrak{m}_{n+1} := \mathfrak{m}_{n} + (\underbrace{\{x \in A \mid x = x_{n} \land 1 \notin \mathfrak{m}_{n} + (x_{n})\}}_{\text{a certain subsingleton set}})$$

In the general case: No,
 but *first-order consequences* of the existence of a maximal ideal do hold.

Questions

- Why has the inductive revolution been so powerful?
- 2 Why do proofs using Zorn's maximal ideals work so well in constructive algebra?
- **3** Why are elements of $\bigcap_{\mathfrak{p}} \mathfrak{p}$ not necessarily nilpotent?
- How can we extract computational content from classical proofs?

Let *L* be a **forcing notion**, a preorder equipped with a **covering system**.¹ **Filters** $F \subseteq L$ are subsets which are upward-closed, downward-directed and split the covering system.²

¹A covering system consists of a set $\text{Cov}(\sigma) \subseteq P(\downarrow \sigma)$ of *coverings* for each element $\sigma \in L$ subject only to the following simulation condition: If $\tau \preccurlyeq \sigma$ and $R \in \text{Cov}(\sigma)$, there should be a covering $S \in \text{Cov}(\tau)$ such that $S \subseteq \downarrow R$.

²A subset *F* splits the covering system iff for every $\sigma \in L$ and $R \in Cov(\sigma)$, if $\sigma \in F$, then $\tau \in F$ for some $\tau \in R$.

Let *L* be a **forcing notion**, a preorder equipped with a **covering system**.¹ **Filters** $F \subseteq L$ are subsets which are upward-closed, downward-directed and split the covering system.²

	preorder L	coverings of an element $\sigma \in L$	filters of <i>L</i>
1	X^*	$\{\sigma x \mid x \in X\}$	maps $\mathbb{N} \to X$
2	X^*	$\{\sigma x \mid x \in X\}, \ \{\sigma \tau \mid \tau \in X^*, a \in \sigma \tau\} \text{ for each } a \in X$	surjections $\mathbb{N} \twoheadrightarrow X$
3	f.g. ideals	-	ideals
4	f.g. ideals	$\{\sigma + (a), \sigma + (b)\}$ for each $ab \in \sigma$, $\{\}$ if $1 \in \sigma$	prime ideals
5	opens	\mathcal{U} such that $\sigma = \bigcup \mathcal{U}$	points
6	{*}	$\{\star \varphi\} \cup \{\star \neg \varphi\}$	witnesses of LEM

¹A covering system consists of a set $\operatorname{Cov}(\sigma) \subseteq P(\downarrow \sigma)$ of *coverings* for each element $\sigma \in L$ subject only to the following simulation condition: If $\tau \preccurlyeq \sigma$ and $R \in \operatorname{Cov}(\sigma)$, there should be a covering $S \in \operatorname{Cov}(\tau)$ such that $S \subseteq \downarrow R$.

²A subset *F* splits the covering system iff for every $\sigma \in L$ and $R \in Cov(\sigma)$, if $\sigma \in F$, then $\tau \in F$ for some $\tau \in R$.

Let *L* be a **forcing notion**, a preorder equipped with a **covering system**. Filters $F \subseteq L$ are subsets which are upward-closed, downward-directed and split the covering system.

	preorder L	coverings of an element $\sigma \in L$	filters of <i>L</i>
1	X^*	$\{\sigma x \mid x \in X\}$	maps $\mathbb{N} \to X$
2	X^*	$\{\sigma x \mid x \in X\}, \ \{\sigma \tau \mid \tau \in X^*, a \in \sigma \tau\} \text{ for each } a \in X$	surjections $\mathbb{N} \twoheadrightarrow X$
3	f.g. ideals	-	ideals
4	f.g. ideals	$\{\sigma + (a), \sigma + (b)\}$ for each $ab \in \sigma$, $\{\}$ if $1 \in \sigma$	prime ideals
5	opens	\mathcal{U} such that $\sigma = \bigcup \mathcal{U}$	points
6	{*}	$\{\star \varphi\} \cup \{\star \neg \varphi\}$	witnesses of LEM

Def. Given a monotone predicate *P* on *L*, inductively define:

$$\frac{P\sigma}{P \mid \sigma} \qquad \frac{\forall (\tau \in R). \ P \mid \tau}{P \mid \sigma} \ (R \in \operatorname{Cov}(\sigma))$$

We use quantifier-like notation: " $\nabla \sigma$. $P\sigma$ " means $P \mid \sigma$.

A forcing notion is a template for a **forcing extension** V^{∇} of the base universe *V*:

When we say that a statement holds in V^{∇} , we mean that its ∇ -translation is true.

A forcing notion is a template for a **forcing extension** V^{∇} of the base universe *V*:

When we say that a statement holds in V^{∇} , we mean that its ∇ -translation is true.

Examples.

For $L = \{\star\}$, "every number is zero or a successor" holds in V^{∇} because $\forall (n \in \mathbb{N}). \neg \neg (\neg \neg (n = 0) \lor \neg \neg (\exists (m \in \mathbb{N}). \neg \neg (n = S(m)))).$

A forcing notion is a template for a **forcing extension** V^{∇} of the base universe *V*:

When we say that a statement holds in V^{∇} , we mean that its ∇ -translation is true.

Examples.

- For $L = \{\star\}$, "every number is zero or a successor" holds in V^{∇} because $\forall (n \in \mathbb{N}). \neg \neg (\neg \neg (n = 0) \lor \neg \neg (\exists (m \in \mathbb{N}). \neg \neg (n = S(m)))).$
- ² For *L* associated to a space, "every symmetric matrix has an eigenvector" holds in V^{∇} iff for every continuous family of symmetric matrices, locally there is a continuous eigenvector-picking function.

A forcing notion is a template for a **forcing extension** V^{∇} of the base universe *V*:

When we say that a statement holds in V^{∇} , we mean that its ∇ -translation is true.

Examples.

- For $L = \{\star\}$, "every number is zero or a successor" holds in V^{∇} because $\forall (n \in \mathbb{N}). \neg \neg (\neg \neg (n = 0) \lor \neg \neg (\exists (m \in \mathbb{N}). \neg \neg (n = S(m)))).$
- ² For *L* associated to a space, "every symmetric matrix has an eigenvector" holds in V^{∇} iff for every continuous family of symmetric matrices, locally there is a continuous eigenvector-picking function.
- **3** For any *L*, "there is a filter of *L*" holds in V^{∇} , witnessed by the **generic filter** of *L*.

A forcing notion is a template for a **forcing extension** V^{∇} of the base universe *V*:

When we say that a statement holds in V^{∇} , we mean that its ∇ -translation is true.

Examples.

- For $L = \{\star\}$, "every number is zero or a successor" holds in V^{∇} because $\forall (n \in \mathbb{N}). \neg \neg (\neg \neg (n = 0) \lor \neg \neg (\exists (m \in \mathbb{N}). \neg \neg (n = S(m)))).$
- ² For *L* associated to a space, "every symmetric matrix has an eigenvector" holds in V^{∇} iff for every continuous family of symmetric matrices, locally there is a continuous eigenvector-picking function.
- **3** For any *L*, "there is a filter of *L*" holds in V^{∇} , witnessed by the **generic filter** of *L*.
- 4 Let *X* be a preorder. Then:
 - ▶ *X* is well iff the generic sequence $\mathbb{N} \to X$ is good.
 - \blacktriangleright (<) is well-founded iff the generic strictly descending chain validates \bot .

The modal multiverse

In general, " φ holds in V^{∇} " and " φ holds in V" are *not* equivalent.

- ► For **positive** extensions, they are equivalent for coherent implications. - e.g. the "Barr cover".
- ► For **positive overt** extensions, they are equivalent for bounded first-order formulas. - e.g. V^{∇} containing the generic surjection $\mathbb{N} \rightarrow X$, if *X* is inhabited.

The modal multiverse

In general, " φ holds in V^{∇} " and " φ holds in V " are not equivalent.

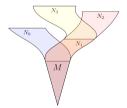
- ► For **positive** extensions, they are equivalent for coherent implications. - e.g. the "Barr cover".
- ► For **positive overt** extensions, they are equivalent for bounded first-order formulas. - e.g. V^{∇} containing the generic surjection $\mathbb{N} \rightarrow X$, if *X* is inhabited.

Def. A statement φ holds . . .

- everywhere $(\Box \varphi)$ iff it holds in every extension.
- **somewhere** ($\Diamond \varphi$) iff it holds in some positive extension.
- **proximally** ($\otimes \varphi$) iff it holds in some positive overt extension.

Foreshadowed by:

- 1984 André Joyal, Miles Tierney. An extension of the Galois theory of Grothendieck.
- 1987 Andreas Blass. Well-ordering and induction in intuitionistic logic and topoi.
- 2010s Milly Maietti, Steve Vickers. Ongoing work on arithmetic universes.
- 2011 Joel David Hamkins. The set-theoretic multiverse.
- 2013 Shawn Henry. Classifying topoi and preservation of higher order logic by geometric morphisms.



The modal multiverse

Def. A statement φ holds . . .

- everywhere $(\Box \varphi)$ iff it holds in every extension.
- **somewhere** ($\Diamond \varphi$) iff it holds in some positive extension.
- **b** proximally ($\otimes \varphi$) iff it holds in some positive overt extension.

For every inhabited set *X*, *proximally* there is an enumeration $\mathbb{N} \twoheadrightarrow X$.

A preorder is well iff *everywhere*, every sequence is good.

A ring element is nilpotent iff all prime ideals *everywhere* contain it. For every ring, *proximally* there is a maximal ideal.

A relation is well-founded iff *everywhere*, there is no descending chain.

Somewhere, the law of excluded middle holds.

The multiverse perspective

- Why has the inductive revolution been so powerful?
 Because the inductive conditions are equivalent to truth in *all* forcing extensions.
- 2 Why do proofs using Zorn's maximal ideals work so well in constructive algebra? Because every ring proximally has a maximal ideal.
- Why are elements of ∩_p p not necessarily nilpotent?
 Because we forgot the prime ideals in forcing extensions.
- How can we extract computational content from classical proofs?
 By traveling the multiverse (upwards, keeping ties to the base), exploiting that
 - LEM holds somewhere and
 - DC holds *proximally*.

```
module (A : Set) where
```

```
open import Data.List
open import Data.List.Membership.Propositional
open import Data.Product
```

```
data Eventually (P : List A \rightarrow Set) : List A \rightarrow Set where

now

: {\sigma : List A}

\rightarrow P \sigma

\rightarrow Eventually P \sigma

later

: {\sigma : List A} {a : A}

\rightarrow ((\tau : List A) \rightarrow a \in (\sigma ++ \tau) \rightarrow Eventually P (\sigma ++ \tau))

\rightarrow Eventually P \sigma
```

U:**- Countable.agda All L1 <N> (Agda:Checked +5 Undo-Tree)

U:%*- *All Done* All L1 <M> (AgdaInfo Undo-Tree)

Partial Agda formalization available.