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Let a continuous family of symmetric matrices be given:

an(t) -+ ap(t)

an () -+ an(t)
There for every parameter value ¢, classically there is
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Why has the inductive revolution been so powerful?
Why do proofs using Zorn’s maximal ideals work so well in constructive algebra?
Why are elements of ﬂp p not necessarily nilpotent?

How can we extract computational content from classical proofs?
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Thm. Every sequence o : N — N is good in that there exist i < j with a(i) < a(j).
Proof. (offensive?) By LEM , there is a minimum «(i). Set j := i + 1. =
Def. A preorder X is well” iff every sequence N — X is good.

Examples. (N> S)a XxY, X7, Tree(X)' @ Don’t quantify over points of spaces

which might not have enough.

only classically

Def. For a predicate P on finite lists over a set X, inductively define:
Po V(x € X). P|lox
Plo Plo

Def. A preorder is well iff Good | [], where Good o := (3(i < j). o[i] < a[j]).



Computational content from classical proofs

Def. A transitive relation (<) on a set X is ...

well-founded* iff there is no infinite chain xy > x; > - - -,
well-founded iff for every x € X, Acc(x),

where Acc is inductively defined by:

V(y < x). Acc(y)
Acc(x)
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Computational content from classical proofs

Def. A transitive relation (<) on a set X is ...

well-founded* iff there is no infinite chain xy > x; > - - -,
well-founded iff for every x € X, Acc(x),

where Acc is inductively defined by:

V(y < x). Acc(y)
Acc(x)

Prop. Let (X, <) be preorder. Let “x < y” mean x < y A =(y < x).
Then: If X is well*, then (<) is well-founded*.

Proof. An infinite strictly descending chain would also be good. ]

Can we extract a constructive proof that well preorders are well-founded?
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Maximal ideals

Thm. Let M be a surjective matrix with more rows than columns over a ring A.
Then 1 =0in A.

Proof. Assume not. Then there is a maximal ideal m. The matrix is surjective over A/m.
Since A/m is a field, this is a contradiction to basic linear algebra. ]
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Let A be a ring. Does there exist a maximal idealm C A?

Yes, if Zorn’s lemma is available.

Yes, if A is countable and membership of finitely generated ideals is decidable:
n + nj/s fl n + njs

- {m (xa), i1 ¢ Myt ()

my := 10y,
0 =10} my, else.

Yes, if A is countable (irrespective of membership decidability):

m := {0}, My i=m,+ ({x€A|x=x, A1 &my+ (x,)
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Maximal ideals

Let A be a ring. Does there exist a maximal idealm C A?
Yes, if Zorn’s lemma is available.
Yes, if A is countable and membership of finitely generated ideals is decidable:

m, + (%), if1&m,+ (x),

my, else.

m, := {0}, Myt i= {

Yes, if A is countable (irrespective of membership decidability):

my ‘= {0}, mn+1 = mn+({xeA|x:anl gmn'f'(xn)})

a certain subsingleton set

In the general case: No,
but first-order consequences of the existence of a maximal ideal do hold.

4/8



Why has the inductive revolution been so powerful?
Why do proofs using Zorn’s maximal ideals work so well in constructive algebra?
Why are elements of ﬂp p not necessarily nilpotent?

How can we extract computational content from classical proofs?
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Constructive forcing (= Grothendieck toposes)

Let Lbe a forcing notion, a preorder equipped with a covering system.! Filters F C L
are subsets which are upward-closed, downward-directed and split the covering system.?

-\ covering system consists of a set Cov(o) C P(lo) of coverings for each element o € L subject only to the following
simulation condition: If 7 < o and R € Cov(0), there should be a covering S € Cov(7) such that S C |R.
2A subset F splits the covering system iff for every o € Land R € Cov(o), if o € F, then 7 € F for some 7 € R.
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Constructive forcing (= Grothendieck toposes)

Let L be a forcing notion, a preorder equipped with a covering system. Filters F C L
are subsets which are upward-closed, downward-directed and split the covering system.

preorder L  coverings of an element o € L filters of L
X* {ox|x € X} maps N — X
X* {ox|xe€ X}, {o7|T € X*,a€ o7} foreacha € X surjections N — X
fg. ideals — ideals
fg.ideals {o+ (a),0+ (b)}foreachabe o, {}ifl€0 prime ideals
opens U such that o = JU points
A {x} {*| ¢} U {x| ¢} witnesses of LEM

Def. Given a monotone predicate P on L, inductively define:
Po V(T €R). P|7
12 & Plo

(R € Cov(o))

We use quantifier-like notation: “Vo. Po” means P | 0.
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Constructive forcing (= Grothendieck toposes)

A forcing notion is a template for a forcing extension VV of the base universe V:

When we say that a statement holds in vV,
we mean that its V-translation is true.
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Constructive forcing (= Grothendieck toposes)

A forcing notion is a template for a forcing extension VV of the base universe V:

When we say that a statement holds in vV,
we mean that its V-translation is true.

Examples.

For L = {x}, “every number is zero or a successor” holds in V'V because
¥(n € N). == (==(n=0) V ~~(3(m € N). ==(n = 5(m)))).

For L associated to a space, “every symmetric matrix has an eigenvector” holds
in VV iff for every continuous family of symmetric matrices, locally there is a
continuous eigenvector-picking function.

For any L, “there is a filter of L” holds in V'V, witnessed by the generic filter of L.

Let X be a preorder. Then:

» X is well iff the generic sequence N — X is good.
» (<) is well-founded iff the generic strictly descending chain validates L.

6b/8



The modal multiverse

In general, “@ holds in VV” and “p holds in V” are not equivalent.

» For positive extensions, they are equivalent for coherent implications.
- e.g. the “Barr cover”.

» For positive overt extensions, they are equivalent for bounded first-order formulas.
-e.g. VV containing the generic surjection N — X, if X is inhabited.
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The modal multiverse

In general, “@ holds in VV” and “p holds in V” are not equivalent.

» For positive extensions, they are equivalent for coherent implications.
- e.g. the “Barr cover”.

» For positive overt extensions, they are equivalent for bounded first-order formulas.
-e.g. VV containing the generic surjection N — X, if X is inhabited.

Def. A statement ¢ holds ...

» everywhere (O¢) iff it holds in every extension.

» somewhere (O ) iff it holds in some positive extension. ‘v

» proximally (& ¢) iff it holds in some positive overt extension. ‘ #
Foreshadowed by: ‘

1984  André Joyal, Miles Tierney. An extension of the Galois theory of Grothendieck.
1987  Andreas Blass. Well-ordering and induction in intuitionistic logic and topoi.
2010s Milly Maietti, Steve Vickers. Ongoing work on arithmetic universes.
2011 Joel David Hamkins. The set-theoretic multiverse.
2013 Shawn Henry. Classifying topoi and preservation of higher order logic by geometric morphisms.
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Def. A statement ¢ holds ...

The modal multiverse
i

» everywhere (O¢) iff it holds in every extension.
» somewhere (O ) iff it holds in some positive extension.

» proximally (& ¢) iff it holds in some positive overt extension.

For every inhabited set X, proximally For every ring, proximally

there is an enumeration N — X. there is a maximal ideal.

A preorder is well iff everywhere, A relation is well-founded iff everywhere,
every sequence is good. there is no descending chain.

A ring element is nilpotent iff Somewhere,

all prime ideals everywhere contain it. the law of excluded middle holds.
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The multiverse perspective

Why has the inductive revolution been so powerful?
Because the inductive conditions are equivalent to truth in all forcing extensions.

Why do proofs using Zorn’s maximal ideals work so well in constructive algebra?
Because every ring proximally has a maximal ideal.

Why are elements ofﬂp p not necessarily nilpotent?
Because we forgot the prime ideals in forcing extensions.

How can we extract computational content from classical proofs?
By traveling the multiverse (upwards, keeping ties to the base), exploiting that
- LEM holds somewhere and
- pc holds proximally.
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module (A : Set) where

open import Data.List
open import Data.List.Membership.Propositional
open import Data.Product

data Eventually (P : List A - Set) : List A - Set where
now

: {0 : List A}

- Po

- Eventually P o
later

: {0 : List A} {a : A}
- ((t : List A) - a € (0 ++ T) -» Eventually P (0o ++ T))
-» Eventually P o

U:**- Countable.agda ALl L1 <N> (Agda:Checked +5 Undo-Tree)

Partial Agda formalization available.
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