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Not in this talk
“Can we salvage the result if we require the function to be uniformly continuous?”

“Can we weaken dependent choice to countable choice?”

“Can we weaken the decidability assumption?”

“Can pointfree topology help?”
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Mathematical phantoms

Gavin Wraith

One of the recurring themes of mathematics, and one that I
have always found seductive, is that of

▶ the nonexistent entity which ought to be there
but apparently is not;

▶ which nevertheless obtrudes its effects so convincingly that
one is forced to concede a broader notion of existence.

C Qp F1 ∞
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A glimpse of algebraic geometry
Algebraic geometry studies solution sets of polynomial systems of equations,
and spaces obtained by gluing such sets:

C. Stussak, P. Schenzel. Interactive visualisation of algebraic surfaces as a tool for shape creation.
Int. J. Arts Technol. 4:2 (2011), pp. 216–218

Concrete results such as Fermat’s Last Theorem: For n ≥ 3, no positive integers satisfy
an + bn = cn. 3 / 6



Mathematics vs. algebraic geometry
Let k be a base field, e.g. Q, Fp, . . .

Functions
Which functions k2 → k are there?

(x, y) 7→ x3 + xy2 − y4

✓ polynomial

(x, y) 7→

{
1, if x = 0,
0, else.

✗ non-polynomial

Implications

1+ x2 = 0
1+ x2 + x4 = 0

}
⇒ 1 = 0

✓ algebraic certificate:
1 = (−x2)·(1+x2)+1·(1+x2+x4)

x2 = 0 ⇒ x = 0

✗ no algebraic certificate:
x = . . . x2 . . .?!
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Transfinite methods?
The standard road to algebraic geometry:

1 Invent topological spaces.
2 Put the Zariski topology on kn.
3 Add non-maximal prime ideals to soberify the space.
4 Invent sheaves.
5 Construct the structure sheaf.

This requires . . .

large structures
powersets

law of excluded middle
axiom of choice

despite:
concrete subject matter
practical computer algebra systems for computations
high-level proofs often constructive
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Synthetic algebraic geometry
Postulate. We have a k-algebra R such that

1 R is local,
2 R is quasicoherent,

and such that we have
3 Zariski-choice.

Def. Spec(A) := HomR(A, R) = {φ : A → R |φ is an R-algebra homomorphism}.
Ex. Spec(R[X1, . . . ,Xn]) ∼= Rn, Spec(R) ∼= R0 = {()}, Spec(R/(x)) ∼= {() | x = 0}.
Prop. R(Rn) ∼= R[X1, . . . ,Xn].
Prop. If Spec(A) = ∅, then A = 0.
Cor. For all x ∈ R, if x ̸= 0, then x is invertible.
Prop. It is not the case that for every ε ∈ R, if ε2 = 0 then ε = 0.
Cor. It is not the case that for every x ∈ R, either x = 0 or x ̸= 0.
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