

Constructive mathematics for mathematical phantoms: synthetic algebraic geometry

- an invitation -

CM:FP 2023 in Niš
June 27th, 2023
Ingo Blechschmidt

## Not in this talk

"Can we salvage the result if we require the function to be uniformly continuous?"
"Can we weaken dependent choice to countable choice?"
"Can we weaken the decidability assumption?"
"Can pointfree topology help?"


## Mathematical phantoms



One of the recurring themes of mathematics, and one that I have always found seductive, is that of

- the nonexistent entity which ought to be there but apparently is not;
- which nevertheless obtrudes its effects so convincingly that one is forced to concede a broader notion of existence.

$\mathbb{C}$

$\mathbb{Q}_{p}$

$\mathbb{F}_{1}$

$\infty$


## A glimpse of algebraic geometry

Algebraic geometry studies solution sets of polynomial systems of equations, and spaces obtained by gluing such sets:

C. Stussak, P. Schenzel. Interactive visualisation of algebraic surfaces as a tool for shape creation.

Int. J. Arts Technol. 4:2 (2011), pp. 216-218
Concrete results such as Fermat's Last Theorem: For $n \geq 3$, no positive integers satisfy

$$
a^{n}+b^{n}=c^{n} .
$$

Let $k$ be a base field, e.g. $\mathbb{Q}, \mathbb{F}_{p}, \ldots$
Functions

Which functions $k^{2} \rightarrow k$ are there?

$$
(x, y) \mapsto x^{3}+x y^{2}-y^{4}
$$

$\checkmark$ polynomial

$$
(x, y) \mapsto \begin{cases}1, & \text { if } x=0 \\ 0, & \text { else }\end{cases}
$$

$X$ non-polynomial

Let $k$ be a base field, e.g. $\mathbb{Q}, \mathbb{F}_{p}, \ldots$

Which functions $k^{2} \rightarrow k$ are there?

$$
(x, y) \mapsto x^{3}+x y^{2}-y^{4}
$$

$\checkmark$ polynomial

## Functions

$$
(x, y) \mapsto \begin{cases}1, & \text { if } x=0 \\ 0, & \text { else }\end{cases}
$$

$X$ non-polynomial
Implications

$$
\left.\begin{array}{r}
1+x^{2}=0 \\
1+x^{2}+x^{4}=0
\end{array}\right\} \Rightarrow 1=0
$$

$$
x^{2}=0 \Rightarrow x=0
$$

Let $k$ be a base field, e.g. $\mathbb{Q}, \mathbb{F}_{p}, \ldots$

## Functions

Which functions $k^{2} \rightarrow k$ are there?

$$
(x, y) \mapsto x^{3}+x y^{2}-y^{4}
$$

$$
(x, y) \mapsto \begin{cases}1, & \text { if } x=0 \\ 0, & \text { else }\end{cases}
$$

$\checkmark$ polynomial
$X$ non-polynomial
Implications

$$
\left.\begin{array}{r}
1+x^{2}=0 \\
1+x^{2}+x^{4}=0
\end{array}\right\} \Rightarrow 1=0 \quad x^{2}=0 \Rightarrow x=0
$$

$\checkmark$ algebraic certificate:

$$
1=\left(-x^{2}\right) \cdot\left(1+x^{2}\right)+1 \cdot\left(1+x^{2}+x^{4}\right)
$$

Let $k$ be a base field, e.g. $\mathbb{Q}, \mathbb{F}_{p}, \ldots$

Which functions $k^{2} \rightarrow k$ are there?

$$
(x, y) \mapsto x^{3}+x y^{2}-y^{4}
$$

$\checkmark$ polynomial

## Functions

$$
(x, y) \mapsto \begin{cases}1, & \text { if } x=0 \\ 0, & \text { else }\end{cases}
$$

$x$ non-polynomial
Implications

$$
\left.\begin{array}{r}
1+x^{2}=0 \\
1+x^{2}+x^{4}=0
\end{array}\right\} \Rightarrow 1=0
$$

$$
x^{2}=0 \Rightarrow x=0
$$

$\checkmark$ algebraic certificate:

$$
1=\left(-x^{2}\right) \cdot\left(1+x^{2}\right)+1 \cdot\left(1+x^{2}+x^{4}\right)
$$

$X$ no algebraic certificate:

$$
x=\ldots x^{2} \ldots ?!
$$

The standard road to algebraic geometry:
1 Invent topological spaces.
2 Put the Zariski topology on $k^{n}$.
3 Add non-maximal prime ideals to soberify the space.
4 Invent sheaves.
5 Construct the structure sheaf.

The standard road to algebraic geometry:
1 Invent topological spaces.
2 Put the Zariski topology on $k^{n}$.
3 Add non-maximal prime ideals to soberify the space.
4 Invent sheaves.
5 Construct the structure sheaf.
This requires ...

- large structures
- powersets
- law of excluded middle
- axiom of choice

The standard road to algebraic geometry:
11 Invent topological spaces.
2 Put the Zariski topology on $k^{n}$.
3 Add non-maximal prime ideals to soberify the space.
4 Invent sheaves.
5 Construct the structure sheaf.
This requires ...

- large structures
- powersets
- law of excluded middle
- axiom of choice
despite:
- concrete subject matter
- practical computer algebra systems for computations
- high-level proofs often constructive


## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local,
$2 R$ is quasicoherent, and such that we have

3 Zariski-choice.

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$2 R$ is quasicoherent, and such that we have

3 Zariski-choice.

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$2 R$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

3 Zariski-choice.

## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$2 R$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

3 Zariski-choice.
Def. $\operatorname{Spec}(A):=\operatorname{Hom}_{R}(A, R)=\{\varphi: A \rightarrow R \mid \varphi$ is an $R$-algebra homomorphism $\}$.

## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$2 R$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

3 Zariski-choice.
Def. $\operatorname{Spec}(A):=\operatorname{Hom}_{R}(A, R)=\{\varphi: A \rightarrow R \mid \varphi$ is an $R$-algebra homomorphism $\}$. Ex. $\operatorname{Spec}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \cong R^{n}$

## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$\boxed{2}$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

3 Zariski-choice.
Def. $\operatorname{Spec}(A):=\operatorname{Hom}_{R}(A, R)=\{\varphi: A \rightarrow R \mid \varphi$ is an $R$-algebra homomorphism $\}$.
Ex. $\operatorname{Spec}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \cong R^{n}, \quad \operatorname{Spec}(R) \cong R^{0}=\{()\}$

## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$\boxed{2}$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

3 Zariski-choice.
Def. $\operatorname{Spec}(A):=\operatorname{Hom}_{R}(A, R)=\{\varphi: A \rightarrow R \mid \varphi$ is an $R$-algebra homomorphism $\}$. Ex. $\operatorname{Spec}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \cong R^{n}, \quad \operatorname{Spec}(R) \cong R^{0}=\{()\}, \quad \operatorname{Spec}(R /(x)) \cong\{() \mid x=0\}$.

## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$2 R$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

3 Zariski-choice.
Def. $\operatorname{Spec}(A):=\operatorname{Hom}_{R}(A, R)=\{\varphi: A \rightarrow R \mid \varphi$ is an $R$-algebra homomorphism $\}$. Ex. $\operatorname{Spec}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \cong R^{n}, \quad \operatorname{Spec}(R) \cong R^{0}=\{()\}, \quad \operatorname{Spec}(R /(x)) \cong\{() \mid x=0\}$. Prop. $R^{\left(R^{n}\right)} \cong R\left[X_{1}, \ldots, X_{n}\right]$.

## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$\boxed{2}$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

3 Zariski-choice.
Def. $\operatorname{Spec}(A):=\operatorname{Hom}_{R}(A, R)=\{\varphi: A \rightarrow R \mid \varphi$ is an $R$-algebra homomorphism $\}$.
Ex. $\operatorname{Spec}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \cong R^{n}, \quad \operatorname{Spec}(R) \cong R^{0}=\{()\}, \quad \operatorname{Spec}(R /(x)) \cong\{() \mid x=0\}$.
Prop. $R^{\left(R^{n}\right)} \cong R\left[X_{1}, \ldots, X_{n}\right]$.
Prop. If $\operatorname{Spec}(A)=\emptyset$, then $A=0$.

## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$\boxed{2}$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

3 Zariski-choice.
Def. $\operatorname{Spec}(A):=\operatorname{Hom}_{R}(A, R)=\{\varphi: A \rightarrow R \mid \varphi$ is an $R$-algebra homomorphism $\}$.
Ex. $\operatorname{Spec}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \cong R^{n}, \quad \operatorname{Spec}(R) \cong R^{0}=\{()\}, \quad \operatorname{Spec}(R /(x)) \cong\{() \mid x=0\}$.
Prop. $R^{\left(R^{n}\right)} \cong R\left[X_{1}, \ldots, X_{n}\right]$.
Prop. If $\operatorname{Spec}(A)=\emptyset$, then $A=0$.
Cor. For all $x \in R$, if $x \neq 0$, then $x$ is invertible.

## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$2 R$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

B Zariski-choice.
Def. $\operatorname{Spec}(A):=\operatorname{Hom}_{R}(A, R)=\{\varphi: A \rightarrow R \mid \varphi$ is an $R$-algebra homomorphism $\}$.
Ex. $\operatorname{Spec}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \cong R^{n}, \quad \operatorname{Spec}(R) \cong R^{0}=\{()\}, \quad \operatorname{Spec}(R /(x)) \cong\{() \mid x=0\}$.
Prop. $R^{\left(R^{n}\right)} \cong R\left[X_{1}, \ldots, X_{n}\right]$.
Prop. If $\operatorname{Spec}(A)=\emptyset$, then $A=0$.
Cor. For all $x \in R$, if $x \neq 0$, then $x$ is invertible.
Prop. It is not the case that for every $\varepsilon \in R$, if $\varepsilon^{2}=0$ then $\varepsilon=0$.

## Synthetic algebraic geometry

Postulate. We have a $k$-algebra $R$ such that
$1 R$ is local: if a sum is invertible, then so is one of the summands,
$2 R$ is quasicoherent: the map $A \rightarrow R^{\operatorname{Spec}(A)}$ is bijective for every f.p. $R$-algebra $A$, and such that we have

B Zariski-choice.
Def. $\operatorname{Spec}(A):=\operatorname{Hom}_{R}(A, R)=\{\varphi: A \rightarrow R \mid \varphi$ is an $R$-algebra homomorphism $\}$.
Ex. $\operatorname{Spec}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \cong R^{n}, \quad \operatorname{Spec}(R) \cong R^{0}=\{()\}, \quad \operatorname{Spec}(R /(x)) \cong\{() \mid x=0\}$.
Prop. $R^{\left(R^{n}\right)} \cong R\left[X_{1}, \ldots, X_{n}\right]$.
Prop. If $\operatorname{Spec}(A)=\emptyset$, then $A=0$.
Cor. For all $x \in R$, if $x \neq 0$, then $x$ is invertible.
Prop. It is not the case that for every $\varepsilon \in R$, if $\varepsilon^{2}=0$ then $\varepsilon=0$.
Cor. It is not the case that for every $x \in R$, either $x=0$ or $x \neq 0$.

