

(On the mystery of generic models)

- an invitation -

Seminar at the Dipartimento di Matematica (Tullio Levi-Civita) Università degli Studi di Padova

June 25th, 2020

Ingo Blechschmidt

Let *R* be a ring.

Thm. For any^{*} property *P* of rings, the following are equivalent:

- **1** The generic ring \mathbb{A} has property *P*.
- **2** Every^{\star} ring has property *P*.
- **3** The ring axioms entail property *P*.

Thm. For any^{*} property *P* of rings, the following are equivalent:

- **1** The generic ring \mathbb{A} has property *P*.
- **2** Every^{\star} ring has property *P*.
- **3** The ring axioms entail property *P*.

Example A. For any $x, y, z \in \mathbb{A}$, x + (y + z) = (x + y) + z.

Thm. For any^{*} property *P* of rings, the following are equivalent:

- **1** The generic ring \mathbb{A} has property *P*.
- **2** Every^{*} ring has property *P*.
- **3** The ring axioms entail property *P*.

Example A. For any $x, y, z \in \mathbb{A}$, x + (y + z) = (x + y) + z. **Example B.** Is 1 + 1 = 0 in \mathbb{A} ?

Thm. For any^{*} property P of rings, the following are equivalent:

- **1** The generic ring \mathbb{A} has property *P*.
- **2** Every^{\star} ring has property *P*.
- **3** The ring axioms entail property *P*.

Example A. For any $x, y, z \in \mathbb{A}$, x + (y + z) = (x + y) + z.

Example B. It is **not the case** that 1 + 1 = 0 in A.

Thm. For any^{*} property *P* of rings, the following are equivalent:

- **1** The generic ring \mathbb{A} has property *P*.
- **2** Every^{\star} ring has property *P*.
- **3** The ring axioms entail property *P*.

Example A. For any $x, y, z \in \mathbb{A}$, x + (y + z) = (x + y) + z.

Example B. It is not the case that 1 + 1 = 0 in A. But also: It is not the case that $1 + 1 \neq 0$ in A.

The generic ring

"Let *R* be a ring." – Which ring does this phrase refer to?

Thm. For any^{*} property *P* of rings, the following are equivalent:

- **1** The generic ring \mathbb{A} has property *P*.
- **2** Every^{\star} ring has property *P*.
- **3** The ring axioms entail property *P*.

Example A. For any $x, y, z \in \mathbb{A}$, x + (y + z) = (x + y) + z.

Example B. It is not the case that 1 + 1 = 0 in A. But also: It is not the case that $1 + 1 \neq 0$ in A.

Example C (Anders Kock). The generic ring is a field:

$$\forall x \in \mathbb{A}. ((x = 0 \Rightarrow 1 = 0) \Rightarrow (\exists y \in \mathbb{A}. xy = 1)).$$

The generic ring

"Let *R* be a ring." – Which ring does this phrase refer to?

 $\mathbb{Z} \quad \mathbb{F}_2 \quad \mathbb{Q}[X] \quad \mathbb{R} \quad \mathcal{O}_X \quad \bigwedge^{\mathcal{A}}_{\mathcal{A}}$

Thm. For any^{*} property P of rings, the following are equivalent:

- **1** The generic ring \mathbb{A} has property *P*.
- **2** Every^{\star} ring has property *P*.
- **3** The ring axioms entail property *P*.

Example A. For any $x, y, z \in \mathbb{A}$, x + (y + z) = (x + y) + z.

Example B. It is **not the case** that 1 + 1 = 0 in A. But also: It is **not the case** that $1 + 1 \neq 0$ in A.

Example C (Anders Kock). The generic ring is a **field**:

$$\forall x \in \mathbb{A}. ((x = 0 \Rightarrow 1 = 0) \Rightarrow (\exists y \in \mathbb{A}. xy = 1)).$$

Hence: When verifying a coherent sequent for all rings, can without loss of generality assume the field condition.

1/5

A selection of noncoherent sequents

The generic object \mathbb{M} validates:

$$\forall x, y \in \mathbb{M}. \neg \neg (x = y).$$

$$\forall x_1, \dots, x_n \in \mathbb{M}. \neg \forall y \in \mathbb{M}. y = x_1 \lor \dots \lor y = x_n.$$

The **generic ring** \mathbb{A} validates:

1
$$\forall x \in \mathbb{A}. (x = 0 \Rightarrow 1 = 0) \Rightarrow (\exists y \in \mathbb{A}. xy = 1).$$

2 $\forall x \in \mathbb{A}. \neg \neg (x = 0).$

The **generic local ring** \mathbb{A}' validates:

$$\begin{array}{l} \blacksquare \quad \forall x \in \mathbb{A}'. \ (x = 0 \Rightarrow 1 = 0) \Rightarrow (\exists y \in \mathbb{A}'. \ xy = 1). \\ \blacksquare \quad \neg \forall x \in \mathbb{A}'. \ \neg \neg (x = 0). \\ \blacksquare \quad \forall f \in \mathbb{A}'[X]_{\text{degree} > 0}. \ \neg \neg \exists x \in \mathbb{A}'. \ f(x) = 0. \end{array}$$

An application in commutative algebra

Let *A* be a reduced ring $(x^n = 0 \Rightarrow x = 0)$. Let \mathbb{p} be the **generic prime ideal**^{*} of *A*. Then $A_{\mathbb{p}} := A[\mathbb{p}^{-1}]$ validates:

 $A_{\mathbb{P}}$ is a field: $\forall x \in A_{\mathbb{P}}$. $(\neg(\exists y \in A_{\mathbb{P}}, xy = 1) \Rightarrow x = 0)$. $A_{\mathbb{P}}$ has $\neg \neg$ -stable equality: $\forall x, y \in A_{\mathbb{P}}$. $\neg \neg(x = y) \Rightarrow x = y$. $A_{\mathbb{P}}$ is anonymously Noetherian.

This observation unlocks a short and conceptual proof of Grothendieck's **generic freeness lemma** in algebraic geometry.

Thm. (baby freeness) Let *M* be an *A*-module. Then **1** implies **3**.

($\iff M_{\mathbb{D}}$ is finitely generated)

 $(\iff M_{\mathbb{D}} \text{ is free})$

- **1** M is finitely generated
- 2 *M* is locally free
- **3** *M* is locally free on a dense open $(\iff M_{\mathbb{P}} \text{ is not not free})$

Proof. Elementary linear algebra over A_{p} .

A systematic source

A. Kock has pointed out [5 (ii)] that the generic local ring satisfies the nongeometric sentence

$$\forall x_1 \dots \forall x_n. \left(\neg \left(\bigwedge_i (x_i = 0) \right) \rightarrow \bigvee_i (\exists y. x_i y = 1) \right)$$

which in classical logic defines a field! The problem of characterising all the nongeometric properties of a generic model appears to be difficult. If the generic model of a geometric theory T satisfies a sentence α then any geometric consequence of $T+(\alpha)$ has to be a consequence of T. We might call α T-redundant. Does the generic T-model satisfy all T-redundant sentences?

> Gavin Wraith. Some recent developments in topos theory. In: Proc. of the ICM (Helsinki, 1978).

Thm. (Nullstellensatz): The generic \mathbb{T} -model U_T validates: For any coherent sequent σ ,

 σ holds for $U_{\mathbb{T}} \iff \underline{\mathbb{T}}/U_{\mathbb{T}}$ proves σ .

Thm. (universality): The generic \mathbb{T} -model validates a first-order formula *P* if and only if *P* is intuitionistically deducible from the axioms of \mathbb{T} and the Nullstellensatz.

Arithmetic universes

Places where we can do mathematics (among others):

- 1 Set (sets)
- 2 Eff (data types)

- **3** sSet (simplicial sets)
- 4 Sh(X) (sheaves over X)

Places where we can do mathematics (among others):

- Set (sets)sSet (simplicial sets)
- **2** Eff (data types) **4** Sh(X) (sheaves over X)

These are examples for arithmetic universes.

Arithmetic universes

Places where we can do mathematics (among others):

- Set (sets)Set (simplicial sets)
- **2** Eff (data types) **4** Sh(X) (sheaves over X)

These are examples for arithmetic universes.

Definition. An *arithmetic universe* is a category with finite limits ("×"), stable finite disjoint coproducts ("II"), stable effective quotients (" X/\sim ") and parametrized list objects (" \mathbb{N} ", "List(X)").

Thm. Any statement which is provable in **predicative constructive mathematics** (no powersets, no $\varphi \lor \neg \varphi$, no $\neg \neg \varphi \Rightarrow \varphi$, no axiom of choice) is true in any arithmetic universe.

Arithmetic universes

Places where we can do mathematics (among others):

- Set (sets)Set (simplicial sets)
- **2** Eff (data types) **4** Sh(X) (sheaves over X)

These are examples for arithmetic universes.

Definition. An *arithmetic universe* is a category with finite limits (" \times "), stable finite disjoint coproducts (" \amalg "), stable effective quotients (" X/\sim ") and parametrized list objects (" \mathbb{N} ", "List(X)").

Thm. Any statement which is provable in **predicative constructive mathematics** (no powersets, no $\varphi \lor \neg \varphi$, no $\neg \neg \varphi \Rightarrow \varphi$, no axiom of choice) is true in any arithmetic universe.

Further examples:

- **5** the **initial** arithmetic universe
- 6 the classifying arithmetic universe for the theory of rings