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The generic ring

“

Let R be a ring.

” – Which ring does this phrase refer to?

Z F2 Q[X ] R OX

A

Thm. For any? property P of rings, the following are equivalent:
1 The generic ring A has property P .
2 Every? ring has property P .
3 The ring axioms entail property P .

Example A. For any x, y, z ∈ A, x + (y + z) = (x + y) + z.
Example B.

It is not the case that 1 + 1 6= 0 in A.
Example C (Anders Kock). The generic ring is a �eld:

∀x ∈ A.
(
(x = 0⇒ 1 = 0)⇒ (∃y ∈ A. xy = 1)

)
.

Hence: When verifying a coherent sequent for all rings, can
without loss of generality assume the �eld condition.
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A selection of noncoherent sequents

The generic objectM validates:

1 ∀x, y ∈M.¬¬(x = y).
2 ∀x1, . . . , xn ∈M.¬∀y ∈M. y = x1 ∨ · · · ∨ y = xn.

The generic ring A validates:

1 ∀x ∈ A. (x = 0⇒ 1 = 0)⇒ (∃y ∈ A. xy = 1).
2 ∀x ∈ A.¬¬(x = 0).

The generic local ring A′ validates:

1 ∀x ∈ A′. (x = 0⇒ 1 = 0)⇒ (∃y ∈ A′. xy = 1).
2 ¬∀x ∈ A′.¬¬(x = 0).
3 ∀f ∈ A′[X ]degree>0.¬¬∃x ∈ A′. f (x) = 0.
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An application in commutative algebra

Let A be a reduced ring (xn = 0⇒ x = 0). Let p be the generic
prime ideal? of A. Then Ap := A[p−1] validates:

Ap is a �eld: ∀x ∈ Ap. (¬(∃y ∈ Ap. xy = 1)⇒ x = 0).
Ap has ¬¬-stable equality: ∀x, y ∈ Ap.¬¬(x = y)⇒ x = y.
Ap is anonymously Noetherian.

This observation unlocks a short and conceptual proof of Grothen-
dieck’s generic freeness lemma in algebraic geometry.

Thm. (baby freeness) Let M be an A-module. Then 1 implies 3 .
1 M is �nitely generated (⇐⇒ Mp is �nitely generated)
2 M is locally free (⇐⇒ Mp is free)
3 M is locally free on a dense open (⇐⇒ Mp is not not free)

Proof. Elementary linear algebra over Ap.
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A systematic source

Gavin Wraith. Some recent developments in topos theory.
In: Proc. of the ICM (Helsinki, 1978).

Thm. (Nullstellensatz): The generic T-model UT validates:
For any coherent sequent σ,

σ holds for UT ⇐⇒ T/UT proves σ.

Thm. (universality): The generic T-model validates a �rst-
order formula P if and only if P is intuitionistically deducible
from the axioms of T and the Nullstellensatz. 4 / 5



Arithmetic universes

Places where we can do mathematics (among others):

1 Set (sets)
2 Eff (data types)

3 sSet (simplicial sets)
4 Sh(X) (sheaves over X )

These are examples for arithmetic universes.
De�nition. An arithmetic universe is a category with �nite lim-
its (“×”), stable �nite disjoint coproducts (“q”), stable e�ective
quotients (“X/∼”) and parametrized list objects (“N”, “List(X)”).
Thm. Any statement which is provable in predicative con-
structivemathematics (no powersets, noϕ∨¬ϕ, no¬¬ϕ⇒ ϕ,
no axiom of choice) is true in any arithmetic universe.
Further examples:

5 the initial arithmetic universe
6 the classifying arithmetic universe for the theory of rings
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