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In this talk

commutative
algebra

traveling the
multiverse

a fractal
without points

proofs as programs monadic side effects 1 / 6



What others are saying

“a bad joke”
“non-

informative”
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Transfinite methods in algebra

Theorem. Let M be a surjective matrix with more rows than
columns over a field. Then  .

Proof. Elementary linear algebra.

Theorem. Let M be a surjective matrix with more rows than
columns over a ring A. Then 1 = 0 in A.

Proof. Assume not.

Then there is a maximal idealm. The matrix
is surjective over the field A/m. This is a contradiction to basic
linear algebra.
Proof. Write M = ( x

y ). By surjectivity, have u, v ∈ A with
u ( x

y ) = ( 1
0 ) and v ( x

y ) = ( 0
1 ) .

Hence 1 = − (vy − 1)︸ ︷︷ ︸
=0

−vy (ux − 1)︸ ︷︷ ︸
=0

+vx (uy − 0)︸ ︷︷ ︸
=0

= 0.

Abstract proofs should be blueprints for concrete ones.
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The status of maximal ideals

▶ In classical mathematics, every ring has a maximal ideal.
– Zorn’s lemma

▶ Without Zorn, every countable ring has a maximal ideal.
– Iterative construction given enumeration x0, x1, . . . [Krull 1929]:

m0 = {0}, mn+1 =

{
mn + (xn), if 1 ̸∈ mn + (xn),
mn, else.

– Also constructively! [Krivine 1996], [Berardi–Valentini 2004]

m0 = {0}, mn+1 = mn + ({xn | 1 ̸∈ mn + (xn)}︸ ︷︷ ︸
a certain subsingleton set

)

A/m is a residue field: noninvertible implies zero.

▶ Constructively, every ring has a maximal ideal in
some extension of the base universe.
– First-order consequences of its existence pass down to the base.
– Obtained by applying K/B–V to the generic surjection N ↠ A
[Joyal–Tierney 1984].
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The generic surjection

Let A be a (perhaps uncountable) set.

▶ Idea: Approximate the generic surjection f : N ↠ A by
dynamically growing partial functions [x0, . . . , xn].
– As a proof runs its course and requires that some element a ∈ A
is contained in the image of f , refine [x0, . . . , xn] to [x0, . . . , xn, a].

▶ The finite approximations serve as the generating opens of
a pointfree space.
– There is no fact of the matter whether “f (0) = x ∧ f (1) = y”.
Instead, this statement has the truth value [x, y].

▶ Boils down to parametrizing everything by the current
approximation and computing in the Eventually monad or
its coarser cousin, the State monad.
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Applications

Conceptual:

▶ Case study for proofs in algebra with minimal logic
▶ New constructive proof of formal substitute for existence:

If the theory of maximal ideals of A is inconsistent, then 1 = 0 in A.

▶ Strengthening of the position of maximal ideals as useful fictions
▶ Reification of dynamical algebra

Concrete: New constructive proofs of . . .

▶ Krull’s lemma and its corollaries
▶ basic results of linear algebra over rings
▶ Suslin’s lemma (key to the solution of Serre’s problem)
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Agda formalization available.
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