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Transfinite methods in algebra

Theorem. Let M be a surjective matrix with more rows than
columns over a field. Then 4.

Proof. Elementary linear algebra. ]
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Proof. Assume not. Then there is a maximal ideal m.
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Transfinite methods in algebra

Theorem. Let M be a surjective matrix with more rows than
columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal m. The matrix
is surjective over the field A/m. This is a contradiction to basic
linear algebra. O




Transfinite methods in algebra

Theorem. Let M be a surjective matrix with more rows than
columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal m. The matrix
is surjective over the field A/m. This is a contradiction to basic
linear algebra. ]

Proof. Write M = (3). By surjectivity, have u, v € A with

u(y)=(3) and v(5)=(3).

Hence 1 = — (vy — 1) —vy (wx — 1) +vx (uy—0) =0. [
=0 =0 =0
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Transfinite methods in algebra

Theorem. Let M be a surjective matrix with more rows than
columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal m. The matrix
is surjective over the field A/m. This is a contradiction to basic
linear algebra. ]

Proof. Write M = (). By surjectivity, have u, v € A with

u(y)=(3) and v(5)=(3).
Hence 1 = — (vy — 1) —vy (ux — 1) +vx (uy — 0) = 0. O
—— ——

——
=0 =0 =0

Abstract proofs should be blueprints for concrete ones.
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The status of maximal ideals

» In classical mathematics, every ring has a maximal ideal.
— Zorn’s lemma
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The status of maximal ideals

In classical mathematics, every ring has a maximal ideal.
— Zorn’s lemma

Without Zorn, every countable ring has a maximal ideal.
— Iterative construction given enumeration xg, x1, . . . [Krull 1929]:

Mo = {0}7 My = {m” + (xn)a if1¢m,+ (xn),

else.
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The status of maximal ideals

» In classical mathematics, every ring has a maximal ideal.
— Zorn’s lemma

» Without Zorn, every countable ring has a maximal ideal.

— Iterative construction given enumeration xg, x1, . . . [Krull 1929]:
m, + (x,), if1&m,+ (x,),
my = {0}7 mn+1 :{ n ( n) g n ( n)
my, else.

— Also constructively! [Krivine 1996], [Berardi—Valentini 2004]
mo = {0},  Mupr =mu+ ({x0[1 € M+ (x)})

a certain subsingleton set
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» In classical mathematics, every ring has a maximal ideal.
— Zorn’s lemma

» Without Zorn, every countable ring has a maximal ideal.
— Iterative construction given enumeration xg, x1, . . . [Krull 1929]:

m, + (xn)a if 1 ¢ m, + (xn)a
my, else.

my = {0}, Mpt1 = {

— Also constructively! [Krivine 1996], [Berardi—Valentini 2004]
mo = {0},  Mupr =mu+ ({x0[1 € M+ (x)})

a certain subsingleton set

A/m is a residue field: noninvertible implies zero.
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The status of maximal ideals

» In classical mathematics, every ring has a maximal ideal.

— Zorn’s lemma

» Without Zorn, every countable ring has a maximal ideal.

— Iterative construction [Krull 1929]
— Also constructively! [Krivine 1996], [Berardi—Valentini 2004]
A/m is a residue field: noninvertible implies zero.

» Constructively, every ring has a maximal ideal in
some extension of the base universe.

— First-order consequences of its existence pass down to the base.

— Obtained by applying K/B-V to the generic surjection N — A
[ Joyal-Tierney 1984].
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The generic surjection

Let A be a (perhaps uncountable) set.

» Idea: Approximate the generic surjection f : N — A by
dynamically growing partial functions [xp, . . . , x,].
— As a proof runs its course and requires that some element a € A

is contained in the image of f, refine [xo, . . ., X, to [xo, . . ., Xn, d].
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— As a proof runs its course and requires that some element a € A

is contained in the image of f, refine [xo, . . ., X, to [xo, . . ., Xn, d].

» The finite approximations serve as the generating opens of
a pointfree space.
— There is no fact of the matter whether “f(0) = x A f(1) = y”

Instead, this statement has the truth value [x, y|.
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The generic surjection

Let A be a (perhaps uncountable) set.

» Idea: Approximate the generic surjection f : N — A by
dynamically growing partial functions [xp, . . . , x,].
— As a proof runs its course and requires that some element a € A

is contained in the image of f, refine [xo, . . ., X, to [xo, . . ., Xn, d].

» The finite approximations serve as the generating opens of
a pointfree space.
— There is no fact of the matter whether “f(0) = x A f(1) = y”
Instead, this statement has the truth value [x, y|.

» Boils down to parametrizing everything by the current
approximation and computing in the Eventually monad or
its coarser cousin, the State monad.
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Applications

Conceptual:

» Case study for proofs in algebra with minimal logic

» New constructive proof of formal substitute for existence:

If the theory of maximal ideals of A is inconsistent, then 1 = 0 in A.

» Strengthening of the position of maximal ideals as useful fictions

» Reification of dynamical algebra

Concrete: New constructive proofs of ...

» Krull’s lemma and its corollaries
» basic results of linear algebra over rings

» Suslin’s lemma (key to the solution of Serre’s problem)
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modu

open
open
open

data

Stat
Stat

U:**-  Co

le (A : Set) where

import Data.List
import Data.List.Membership.Propositional
import Data.Product

Eventually (P : List A - Set) : List A - Set where
{6 : List A}

Po
Eventually P o

l -

{

{c : List A} {a : A}
((t : List A) - a € (0 ++ T) -» Eventually P (o ++ 1))
Eventually P o

l ==

l

e : (List A » Set) - (List A - Set)
e Po=((t : List A) - X[ v €E List A ] P (0 ++ T ++ Vv))

table.agda ALl L1  <N» (Agda:Checked +5 Undo-Tree)

*All Done* ALl L1

Agda formalization available.




