Zuletzt geändert: Mo, 20.11.2006

«K12/K13» 113. Hausaufgabe «PDF», «POD»




0.0.1 113. Hausaufgabe

0.0.1.1 Analysis-Buch Seite 256, Aufgabe 15
a)

\int \sin^2 x \,\mathrm{d}x = {}\int \sin x \left(-\cos x\right)' \mathrm{d}x = {}-\sin x \cos x + \int \underbrace{\cos^2 x}_{1 - \sin^2 x} \,\mathrm{d}x = {}-\sin x \cos x + x - \int \sin^2 \,\mathrm{d}x;sin2xdx = sinx cosxdx = sinxcosx+cos2x 1sin 2xdx = sinxcosx+xsin2dx;

\int \sin^2 x \,\mathrm{d}x = \frac{1}{2} \left(x - \sin x \cos x\right);sin2xdx = 1 2 x sinxcosx;

\int\limits_0^{\pi} \sin^2 x \,\mathrm{d}x = {}\frac{1}{2} \left[x - \sin x \cos x\right]_0^{\pi} = {}\frac{\pi}{2};0πsin2xdx = 1 2 x sinxcosx0π = π 2 ;

b)

\int\limits_1^e x \ln x \,\mathrm{d}x = {}\int\limits_1^e \left(\frac{1}{2} x^2\right)' \cdot \ln x \,\mathrm{d}x = {}\left[\frac{1}{2} x^2 \cdot \ln x - \int \frac{1}{x} \cdot \frac{1}{2} x^2 \,\mathrm{d}x\right]_1^e = {}\left[\frac{1}{2} x^2 \cdot \ln x - \frac{1}{4} x^2\right]_1^e = {}\frac{e^2}{4} + \frac{1}{4};1exlnxdx = 1e 1 2x2 lnxdx = 1 2x2 lnx 1 x 1 2x2dx 1e = 1 2x2 lnx 1 4x2 1e = e2 4 + 1 4;

c)

\int\limits_1^{e^2} \sqrt{x} \ln x \,\mathrm{d}x = {}\int\limits_1^{e^2} \left(\frac{2}{3} x^{3/2}\right)' \cdot \ln x \,\mathrm{d}x = {}\left[\frac{2}{3} x^{3/2} \cdot \ln x - \int \frac{1}{x} \cdot \frac{2}{3} x^{3/2} \,\mathrm{d}x\right]_1^{e^2} = {}\frac{2}{3} \left[x^{3/2} \cdot \ln x - \frac{2}{3} x^{3/2}\right]_1^{e^2} = {}\frac{8}{9} e^3 + \frac{4}{9};1e2 xlnxdx = 1e2 2 3x32 lnxdx = 2 3x32 lnx 1 x 2 3x32dx 1e2 = 2 3 x32 lnx 2 3x32 1e2 = 8 9e3+4 9;

d)

\int\limits_{\sqrt{e}}^e \ln^2 x \,\mathrm{d}x = {}\int\limits_{\sqrt{e}}^e x' \cdot \ln^2 x \,\mathrm{d}x = {}\left[x \cdot \ln^2 x - \int x \cdot 2 \ln x \cdot \frac{1}{x} \,\mathrm{d}x\right]_{\sqrt{e}}^e = {}\left[x \cdot \ln^2 x - 2 \int x \ln x \,\mathrm{d}x\right]_{\sqrt{e}}^e = {}\left[x \cdot \ln^2 x - 2 \left(x \cdot \ln x - x\right)\right]_{\sqrt{e}}^e = {}\left[x \cdot \left(\ln^2 x - 2 \ln x + 2\right)\right]_{\sqrt{e}}^e = {}e - \frac{5}{4} \sqrt{e};eeln2xdx = eex ln2xdx = x ln2x x 2lnx 1 xdxee = x ln2x 2xlnxdxee = x ln2x 2 x lnx xee = x ln2x 2lnx + 2ee = e5 4e;