Zuletzt geändert: Mi, 22.03.2006

«K12/K13» 65. Hausaufgabe «PDF», «POD»




0.0.1 65. Hausaufgabe

0.0.1.1 Geometrie-Buch Seite 40, Aufgabe 7

Berechne und vereinfache.

a)

\begin{vmatrix}1&1&0\\1&1+a&0\\1&1&1+b\end{vmatrix} = \left(1 + b\right) \begin{vmatrix}1&1\\1&1+a\end{vmatrix} = \left(1 + b\right) \left(1 + a - 1\right) = a + ab; 1 1 0 11 + a 0 1 1 1 + b = 1 + b 1 1 11 + a = 1 + b 1 + a 1 = a+ab;

b)

\begin{vmatrix}1&a&-b\\-a&1&c\\b&-c&1\end{vmatrix} = \begin{vmatrix}1&c\\-c&1\end{vmatrix} + a \begin{vmatrix}a&-b\\-c&1\end{vmatrix} + b \begin{vmatrix}a&-b\\1&c\end{vmatrix} = \\ 1 + c^2 + a^2 - abc + abc + b^2 = 1 + a^2 + b^2 + c^2; 1 a b a 1 c b c 1 = 1 c c1 + a a b c 1 + b ab 1 c = 1 + c2 + a2 abc + abc + b2 = 1 + a2 + b2 + c2;

c)

\begin{vmatrix}1&1&1\\a&b&c\\a^2&b^2&c^2\end{vmatrix} = \begin{vmatrix}b&c\\b^2&c^2\end{vmatrix} - \begin{vmatrix}a&c\\a^2&c^2\end{vmatrix} + \begin{vmatrix}a&b\\a^2&b^2\end{vmatrix} = \\ bc^2 - b^2c - ac^2 + a^2c + ab^2 - a^2b = a^2 \left(c - b\right) + b^2 \left(a - c\right) + c^2 \left(b - a\right); 1 1 1 a b c a2b2c2 = b c b2c2 a c a2c2 + a b a2b2 = bc2 b2c ac2 + a2c + ab2 a2b = a2 c b + b2 a c + c2 b a;

d)

\begin{vmatrix}a&b&a+b\\b&a+b&a\\a+b&a&b\end{vmatrix} = a \begin{vmatrix}a+b&a\\a&b\end{vmatrix} - b \begin{vmatrix}b&a+b\\a&b\end{vmatrix} + \left(a + b\right) \begin{vmatrix}b&a+b\\a+b&a\end{vmatrix} = a \left(ab + b^2 - a^2\right) - b \left(b^2 - a^2 - ab\right) + \left(a + b\right)\left(ab - a^2 - 2ab - b^2\right) = -2a^3 - 2b^3; a b a + b b a + b a a + b a b = a a + ba a b b ba + b a b + a + b b a + b a + b a = a ab + b2 a2 b b2 a2 ab + a + b ab a2 2ab b2 = 2a3 2b3;

e)

\begin{vmatrix}\sin\alpha&\cos\alpha\tan\beta&\cos\alpha\\-\cos\alpha&\sin\alpha\tan\beta&\sin\alpha\\0&-1&\tan\beta\end{vmatrix} = \begin{vmatrix}\sin\alpha&\cos\alpha\\-\cos\alpha&\sin\alpha\end{vmatrix} + \tan\beta \begin{vmatrix}\sin\alpha&\cos\alpha\tan\beta\\-\cos\alpha&\sin\alpha\tan\beta\end{vmatrix} = \sin^2 \alpha + \cos^2 \alpha + \tan^2 \beta \left(\sin^2 \alpha + \cos^2 \alpha\right) = 1 + \tan^2 \beta; sinα cosαtanβcosα cosαsinαtanβ sinα 0 1 tanβ = sinα cosα cosαsinα + tanβ sinα cosαtanβ cosαsinαtanβ = sin2α + cos2α + tan2β sin2α + cos2α = 1 + tan2β;

0.0.1.2 Geometrie-Buch Seite 40, Aufgabe 9

Löse die Gleichungssysteme mit der Cramer-Regel.

a)

\begin{array}{rcrcrcl} {} 2 x_1 &+& x_2 &+& 5 x_3 &=& 1; \\ {} 2 x_1 &+& 4 x_2 &+& x_3 &=& 1; \\ {} x_1 &+& x_2 &+& 2 x_3 &=& 1; \end{array}2x1+ x2+5x3 =1; 2x1+4x2+ x3 =1; x1+ x2+2x3 =1;

D = \begin{vmatrix}2&1&5\\2&4&1\\1&1&2\end{vmatrix} = \begin{vmatrix}1&5\\4&1\end{vmatrix} - \begin{vmatrix}2&5\\2&1\end{vmatrix} + 2 \begin{vmatrix}2&1\\2&4\end{vmatrix} = -19 + 8 + 12 = 1 \neq 0;D = 215 241 112 = 15 41 25 21 + 2 21 24 = 19+8+12 = 10;

x_1 = \frac{D_1}{D} = \frac{\begin{vmatrix}1&1&5\\1&4&1\\1&1&2\end{vmatrix}}{D} = \begin{vmatrix}4&1\\1&2\end{vmatrix} - \begin{vmatrix}1&5\\1&2\end{vmatrix} + \begin{vmatrix}1&5\\4&1\end{vmatrix} = 7 + 3 - 19 = -9;x1 = D1 D = 115 141 112 D = 41 12 15 12 + 15 41 = 7+319 = 9;

x_2 = \frac{D_2}{D} = \frac{\begin{vmatrix}2&1&5\\2&1&1\\1&1&2\end{vmatrix}}{D} = -\begin{vmatrix}2&1\\1&2\end{vmatrix} + \begin{vmatrix}2&5\\1&2\end{vmatrix} - \begin{vmatrix}2&5\\2&1\end{vmatrix} = -3 - 1 + 8 = 4;x2 = D2 D = 215 211 112 D = 21 12 + 25 12 25 21 = 31+8 = 4;

x_3 = \frac{D_3}{D} = \frac{\begin{vmatrix}2&1&1\\2&4&1\\1&1&1\end{vmatrix}}{D} = \begin{vmatrix}2&4\\1&1\end{vmatrix} - \begin{vmatrix}2&1\\1&1\end{vmatrix} + \begin{vmatrix}2&1\\2&4\end{vmatrix} = -2 - 1 + 6 = 3;x3 = D3 D = 211 241 111 D = 24 11 21 11 + 21 24 = 21+6 = 3;

(x_1, x_2, x_3) = (-9, 4, 3);(x1,x2,x3) = (9,4,3);

b)

\begin{array}{rcrcrcl} {} 3 x_1 &+& 5 x_2 &+& 3 x_3 &=& 1; \\ {} 2 x_1 &+& -x_2 &+& -x_3 &=& -2; \\ {} x_1 &+& 3 x_2 &+& 2 x_3 &=& -1; \end{array}3x1+ 5x2+ 3x3 =1; 2x1+ x2+ x3 = 2; x1+ 3x2+ 2x3 = 1;

D = \begin{vmatrix}1&5&3\\2&-1&-1\\1&3&2\end{vmatrix} = -2 \begin{vmatrix}5&3\\3&2\end{vmatrix} - \begin{vmatrix}3&3\\1&2\end{vmatrix} + 2 \begin{vmatrix}3&5\\1&3\end{vmatrix} = -2 -3 + 4 = -1 \neq 0;D = 1 5 3 211 1 3 2 = 2 53 32 33 12 + 2 35 13 = 23+4 = 10;

x_1 = \frac{D_1}{D} = \frac{\begin{vmatrix}1&5&3\\-2&-1&-1\\-1&3&2\end{vmatrix}}{D} = -\left( 2 \begin{vmatrix}5&3\\3&2\end{vmatrix} - \begin{vmatrix}1&3\\-1&2\end{vmatrix} + \begin{vmatrix}1&5\\-1&3\end{vmatrix}\right) = -\left(2 - 5 + 8\right) = -5;x1 = D1 D = 1 5 3 211 1 3 2 D = 2 53 32 1 3 12 + 1 5 13 = 2 5 + 8 = 5;

x_2 = \frac{D_2}{D} = \frac{\begin{vmatrix}3&1&3\\2&-1&-1\\1&-1&2\end{vmatrix}}{D} = -\left( \begin{vmatrix}1&3\\-2&-1\end{vmatrix} + \begin{vmatrix}3&3\\2&-1\end{vmatrix} + 2 \begin{vmatrix}3&1\\2&-2\end{vmatrix}\right) = -\left(5 - 9 - 16\right) = 20;x2 = D2 D = 3 1 3 211 11 2 D = 1 3 21 + 3 3 21 + 2 3 1 22 = 5 9 16 = 20;

x_3 = \frac{D_3}{D} = \frac{\begin{vmatrix}3&5&1\\2&-1&-2\\1&3&-1\end{vmatrix}}{D} = -\left( \begin{vmatrix}2&-1\\1&3\end{vmatrix} + 2 \begin{vmatrix}3&5\\1&3\end{vmatrix} - \begin{vmatrix}3&5\\2&-1\end{vmatrix}\right) = -\left(7 + 8 + 13\right) = -28;x3 = D3 D = 3 5 1 212 1 3 1 D = 21 1 3 + 2 35 13 3 5 21 = 7 + 8 + 13 = 28;

(x_1, x_2, x_3) = (-5, 20, -28);(x1,x2,x3) = (5,20,28);